Optimierung der Leistungsaufnahme eines solarbetriebenen Ad-Hoc-Netzwerk-Knotens

von: Christian Schulz

Diplomica Verlag GmbH, 2008

ISBN: 9783836618076 , 108 Seiten

Format: PDF, OL

Kopierschutz: frei

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 43,00 EUR

Mehr zum Inhalt

Optimierung der Leistungsaufnahme eines solarbetriebenen Ad-Hoc-Netzwerk-Knotens


 


"Kapitel 4.1 Simulationsumgebungen als Hilfsmittel

Durch viele Streuvariablen mit unstegigen, nicht erfassbaren (weil zufälligen) Einflüssen werden objektive Vergleiche und Gegenüberstellungen der 4 Strategien aus Kapitel 3.5 sehr erschwert (vgl. [Hop90]). Um dieses Problem zu lösen und die korrekte Auswahl zu treffen, werden alle abhängigen Variablen (physikalischen und technischen Eigenschaften) des Systems nachgebildet und die Berechnungen zur späteren Auswertung aufgezeichnet. Wie Abb. 4.1 zeigt, haben die Ergebnisse direkten Einfluss auf die Eingaben: Das System bildet einen geschlossenen Kreislauf. Nach Ablauf der Simulationen ist es möglich alle implementierten Strategien unter gleichen Kriterien zu vergleichen. Als Hauptindikator gilt die Simulationszeit: Je länger die Simulation läuft, desto besser ist die zugrunde liegende Energieverwaltungsstrategie. Im Kontext dieser Anwendung gibt es im wesentlichen drei große Gebiete der Simulation: Diskrete, kontinuierliche und Monte Carlo Simulationen. Es wird folglich unterschieden zwischen Zuständen oder zeitlichen Abständen. Ferner gibt es Vertreter welche diese Eigenschaften vereinen: Diskret schrittweise oder diskret ereignisorientiert (vgl. [Zei00], S.135). Für die Modellierung und Simulation der Abläufe in Netzwerken oder der Datenverarbeitung sind diskrete Modelle geeignet, da sie in endlichen Zeitabständen den Systemstatus deterministisch wiedergeben können. Da jedoch auch kontinuierliche Elemente wie Wetterzustände eine Rolle spielen muss hier ein Kompromiss gefunden werden. Eine Lösung könnte eine Kombination aus diskreten und kontinuierlichen Simulationen sein: Mit numerischer Integration werden kontinuierliche Zusammenhänge wie Temperaturverläufe oder auch Kapazitätsverläufe mit Abhängigkeiten diskretisiert (vgl. Kapitel 3.4 und [Ban05]). Infolgedessen wird ein Modellformalismus mit diskret schrittweisen und Äquidistanten, zeitgetakteten Verfahren eingesezt, in denen Überführungsfunktionen alte Zustände in neue Zustände überführen."