Wireless Communication Electronics - Introduction to RF Circuits and Design Techniques

von: Robert Sobot

Springer-Verlag, 2012

ISBN: 9781461411178 , 393 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 71,39 EUR

Mehr zum Inhalt

Wireless Communication Electronics - Introduction to RF Circuits and Design Techniques


 

Preface

8

Acknowledgements

10

Contents

12

Abbreviations

18

Chapter

Chapter

20

20

1.1 Fundamental Concepts in Physics

20

1.2 Wireless Transmission of Signals

21

1.2.1 A Short History of Wireless Technology

21

1.3 Nature of Waves

24

1.4 Wave Characteristics

27

1.4.1 Amplitude

28

1.4.2 Frequency

28

1.4.3 Envelope

29

1.4.4 Phase, Group, and Signal Velocity

30

1.4.5 Wavelength

31

1.4.6 Multitone Waveform

34

1.4.7 Frequency Spectrum

35

1.5 Electromagnetic Waves

36

1.5.1 Tuning

38

1.5.2 Maxwell's Equations

39

1.5.2.1 Magnetic Field

39

1.5.2.2 Electric Field

40

1.5.2.3 Electrical Shielding

42

1.5.2.4 Magnetic Shielding

42

1.5.2.5 Displacement Current

42

1.5.3 The Concept of High Frequency

43

1.6 RF Communication Systems

45

1.7 Summary

46

Problems

47

Chapter

Chapter

49

49

2.1 Matter and Electricity

49

2.2 Electromotive Force

49

2.3 Electric Current Effects

51

2.4 Conductors, Semiconductors, and Insulators

51

2.5 Basic Electrical Variables

52

2.5.1 Voltage

52

2.5.2 Current

53

2.5.3 Power

55

2.5.4 Impedance

55

2.6 Electronic Signals

57

2.6.1 Properties of a Sine Wave

57

2.6.1.1 Root Mean Square

58

2.6.1.2 Common Mode of a Signal

59

2.6.2 DC and AC Signals

61

2.6.3 Single-Ended and Differential Signals

62

2.6.4 Constructive and Destructive Signal Interactions

63

2.7 Signal Quantification

64

2.7.1 AC Signal Power

64

2.7.2 The Decibel Scale

66

2.7.3 The Meaning of ``Ground''

67

2.8 Summary

68

Problems

68

Chapter

Chapter

71

71

3.1 Thermal Noise

71

3.2 Equivalent Noise Bandwidth

74

3.2.1 Noise Bandwidth in an RC Network

74

3.2.2 Noise Bandwidth in an RLC Network

75

3.3 Signal to Noise Ratio

76

3.4 Noise Figure

77

3.5 Noise Temperature

78

3.6 Noise Figure of Cascaded Networks

80

3.7 Noise in Active Devices

82

3.8 Summary

83

Problems

83

Chapter

Chapter

85

85

4.1 Simple Circuit Elements

85

4.1.1 Simple Conductive Wire

85

4.1.1.1 DC and RF Behaviours of a Simple Wire

86

4.1.1.2 Skin Depth of a Simple Wire

88

4.1.2 Ideal Voltage Source

89

4.1.3 Ideal Current Source

90

4.1.4 Resistance

91

4.1.4.1 Linear and Nonlinear Resistance

93

4.1.4.2 AC Signal Generator and Resistive Load

94

4.1.5 Capacitance

95

4.1.5.1 Capacitive Reactance

97

4.1.5.2 AC Steady State of a Circuit with Capacitor

99

4.1.5.3 Transient Capacitive Current

100

4.1.6 Inductance

102

4.1.6.1 AC Steady State of a Circuit with Inductor

105

4.1.6.2 Transient Inductive Current

106

4.1.7 Transformer

107

4.1.7.1 Energy Stored in a Transformer

109

4.1.7.2 Transformer Loading

110

4.1.8 Memristance

116

4.1.9 Voltage Divider

117

4.1.9.1 Resistive Voltage Divider

118

4.1.9.2 RC Voltage Divider

119

4.1.9.3 RL Voltage Divider

121

4.2 Basic Network Laws

122

4.2.1 Ohm's Law

123

4.2.2 Kirchhoff's Laws

123

4.2.3 Thévenin and Norton's Transformations

124

4.3 Semiconductor Devices

125

4.3.1 Doped Semiconductor Material

125

4.3.2 P–N Junction

127

4.3.3 Diode

128

4.3.4 Bipolar Junction Transistor

131

4.3.4.1 BJT Equivalent Circuits

135

4.3.5 MOS Field-Effect Transistor

137

4.3.6 Junction Field-Effect Transistor

138

4.4 Summary

140

Problems

140

Chapter

Chapter

144

144

5.1 The LC Circuit

144

5.1.1 Damping and Maintaining Oscillations

146

5.1.2 Forced Oscillations

150

5.2 The RLC Circuit

152

5.2.1 Serial RLC Network

152

5.2.2 Parallel RLC Network

155

5.3 Q Factor

156

5.3.1 Q Factor of a Serial RLC Network

158

5.3.2 Q Factor of a Parallel RLC Network

159

5.4 Self-resonance of an Inductor

161

5.5 Serial to Parallel Impedance Transformations

162

5.6 Dynamic Resistance

163

5.7 General RLC Networks

164

5.7.1 Derivation for the Resonant Frequency 0

165

5.7.2 Derivation for the Dynamic Resistance RD

167

5.8 Selectivity

168

5.9 Bandpass Filters

168

5.10 Coupled Tuned Circuit

171

5.11 Summary

171

Problems

172

Chapter

Chapter

173

173

6.1 System Partitioning Concept

173

6.2 Maximum Power Transfer

174

6.3 Measuring Power Loss Due to Mismatch

176

6.4 Matching Networks

177

6.5 Impedance Transformation

178

6.6 The Q Matching Technique

178

6.6.1 Matching Real Impedances

179

6.6.2 Matching Complex Impedances

182

6.6.2.1 Absorbing the Parasitics

182

6.6.2.2 Resonating out Excessive Parasitics

183

6.7 Bandwidth of a Single-Stage LC Matching Network

184

6.7.1 Increasing Bandwidth with Multisection Impedance Matching

185

6.7.2 Decreasing Bandwidth with Multisection Impedance Matching

186

6.8 Summary

187

Problems

187

Chapter

Chapter

189

189

7.1 General Amplifiers

189

7.1.1 Amplifier Classification

190

7.1.2 Voltage Amplifier

191

7.1.3 Current Amplifier

194

7.1.4 Transconductance Amplifier

197

7.1.5 Transresistance Amplifier

198

7.2 Single-Stage Amplifiers

199

7.2.1 Common-Base Amplifier

199

7.2.1.1 Input Resistance

200

7.2.1.2 Output Resistance

202

7.2.1.3 Voltage Gain

203

7.2.2 Common-Emitter Amplifier

204

7.2.2.1 Input Resistance

204

7.2.2.2 Output Resistance

205

7.2.2.3 Voltage Gain

207

7.2.3 Common-Collector Amplifier

208

7.2.3.1 Input Resistance

208

7.2.3.2 Output Resistance

210

7.2.3.3 Voltage Gain

210

7.3 Cascode Amplifier

212

7.4 The Biasing Problem

213

7.4.1 Emitter-Degenerated CE Amplifier

216

7.4.2 Voltage Divider for Biasing Control

217

7.4.3 Two-Stage Biasing Control

219

7.5 AC Analysis of Voltage Amplifiers

222

7.6 Miller Capacitance

223

7.7 Tuned Amplifiers

225

7.7.1 Single-Stage CE RF Amplifier

226

7.7.1.1 Intuitive View of CE RF Amplifier Operation

226

7.7.1.2 Miller Effect

228

7.7.1.3 CE RF Amplifier Stability

228

7.7.1.4 Cascode RF and IF Amplifiers

231

7.7.1.5 Unilateralisation of CE Amplifier

231

7.7.2 Single-Stage CB RF Amplifier

232

7.7.3 Insertion Loss

233

7.8 Summary

233

Problems

234

Chapter

Chapter

237

237

8.1 Criteria for Oscillations

237

8.2 Ring Oscillators

239

8.3 Phase-Shift Oscillators

240

8.4 RF Oscillators

241

8.4.1 Tapped L, Centre-Grounded Feedback Network

241

8.4.2 Tapped C, Centre-Grounded Feedback Network

244

8.4.3 Tapped L, Bottom-Grounded Feedback Network

244

8.4.4 Tapped C, Bottom-Grounded Feedback Network

245

8.4.5 Tuned Transformer

245

8.5 Amplitude-Limiting Methods

247

8.5.1 Automatic Gain Control

247

8.5.2 Clamp Biasing

247

8.5.3 Gain Reduction with Temperature-Dependent Resistors

248

8.5.4 Device Saturation with Tuned Output

248

8.6 Crystal-Controlled Oscillators

248

8.7 Voltage-Controlled Oscillators

250

8.8 Time and Amplitude Jitter

254

8.9 Summary

255

Problems

255

Chapter

Chapter

257

257

9.1 Signal-Mixing Mechanism

257

9.2 Diode Mixers

259

9.3 Transistor Mixers

261

9.4 JFET Mixers

262

9.5 Dual-Gate MOSFET Mixers

263

9.6 Image Frequency

265

9.6.1 Image Rejection

265

9.6.2 LC Tank Admittance

266

9.7 Summary

267

Problems

267

Chapter

Chapter

269

269

10.1 PLL Operational Principles

269

10.2 Linear Model of PLL

270

10.2.1 Phase Detector Model

271

10.2.2 VCO Model

272

10.2.3 PLL Bandwidth

273

10.2.4 The Loop Filter Model

275

10.3 PLL Applications

276

10.3.1 Frequency Synthesizers

276

10.3.2 Clock and Data Recovery Units (CRU)

277

10.3.3 Tracking Filters

277

10.4 Summary

277

Problems

278

Chapter

Chapter

279

279

11.1 The Need for Modulation

279

11.2 Amplitude Modulation

281

11.2.1 Trapezoidal Patterns and the Modulation Index

283

11.2.2 Frequency Spectrum of Amplitude-Modulated Signal

284

11.2.3 Average Power

284

11.2.4 Double-Sideband and Single-Sideband Modulation

286

11.2.4.1 Bandpass Filters for SSB Modulation

286

11.2.5 The Need for Frequency and Phase Synchronization

289

11.2.6 Amplitude Modulator Circuits

290

11.2.6.1 BJT AM Circuit

292

11.2.6.2 Class C AM Circuit

292

11.2.6.3 Balanced AM Circuits

293

11.2.6.4 Double-Balanced Diode Ring Modulator

294

11.2.6.5 Single-Balanced FET Modulator

295

11.2.6.6 Double-Balanced IC Modulator

296

11.3 Angle Modulation

297

11.3.1 Frequency Modulation

298

11.3.2 Phase Modulation

303

11.3.3 Angle Modulator Circuits

304

11.3.3.1 Reactance Modulator

304

11.3.3.2 Varicap Diode-Based Phase Modulator

306

11.4 PLL Modulator

307

11.5 Summary

308

Problems

308

Chapter

Chapter

310

310

12.1 AM Demodulation Principles

310

12.2 Diode AM Envelope Detector

311

12.2.1 Ripple Factor

312

12.2.2 Detection Efficiency

313

12.2.3 Input Resistance

316

12.2.4 Distortion Factor

318

12.3 FM Wave Demodulation

320

12.3.1 Slope Detectors and FM Discriminators

322

12.3.1.1 Dual Slope Detector

323

12.3.1.2 Foster–Seeley Dual Slope Detector

323

12.3.2 Quadrature Detector

327

12.3.3 PLL Demodulator

330

12.4 Summary

330

Problems

331

Chapter

Chapter

333

333

13.1 Basic Radio Receiver Topologies

333

13.2 Nonlinear Effects

335

13.2.1 Harmonic Distortion

337

13.2.1.1 Gain Compression

338

13.2.2 Inter-Modulation

339

13.2.3 Cross-Modulation

342

13.2.4 Image Frequency

343

13.3 Radio Receiver Specifications

345

13.3.1 Dynamic Range

345

13.3.1.1 Noise Floor

346

13.3.1.2 Sensitivity

346

13.4 Summary

347

Problems

348

Appendix

Appendix

349

349

Appendix

Appendix

350

350

Appendix

Appendix

351

351

Appendix

Appendix

352

352

Appendix

Appendix

354

354

Appendix

Appendix

355

355

Appendix

Appendix

356

356

Bibliography

357

Glossary

359

Solutions

365

Index

390