A Transition to Abstract Mathematics - Learning Mathematical Thinking and Writing

A Transition to Abstract Mathematics - Learning Mathematical Thinking and Writing

von: Randall Maddox

Elsevier Textbooks, 2008

ISBN: 9780080922713 , 384 Seiten

2. Auflage

Format: PDF

Kopierschutz: DRM

Windows PC,Mac OSX Apple iPad, Android Tablet PC's

Preis: 51,99 EUR

Mehr zum Inhalt

A Transition to Abstract Mathematics - Learning Mathematical Thinking and Writing


 

Front Cover

1

A Transition to Abstract Mathematics

4

Copyright Page

5

Table of Contents

8

Why Read This Book?

14

Preface

16

Preface to the First Edition

18

Acknowledgments

22

Chapter 0. Notation and Assumptions

24

0.1 Set Terminology and Notation

24

0.2 Assumptions about the Real Numbers

26

0.2.1 Basic Algebraic Properties

26

0.2.2 Ordering Properties

28

0.2.3 Other Assumptions

30

Part 1: Foundations of Logic and ProofWriting

32

Chapter 1. Language and Mathematics

34

1.1 Introduction to Logic

34

1.1.1 Statements

34

1.1.2 Negation of a Statement

36

1.1.3 Combining Statements with AND

36

1.1.4 Combining Statements with OR

37

1.1.5 Logical Equivalence

39

1.1.6 Tautologies and Contradictions

41

1.2 If-Then Statements

41

1.2.1 If-Then Statements Defined

41

1.2.2 Variations on p . q

44

1.2.3 Logical Equivalence and Tautologies

46

1.3 Universal and Existential Quantifiers

50

1.3.1 The Universal Quantifier

51

1.3.2 The Existential Quantifier

52

1.3.3 Unique Existence

55

1.4 Negations of Statements

56

1.4.1 Negations of AND and OR Statements

56

1.4.2 Negations of If-Then Statements

57

1.4.3 Negations of Statements with the Universal Quantifier

59

1.4.4 Negations of Statements with the Existential Quantifier

60

1.5 How We Write Proofs

63

1.5.1 Direct Proof

63

1.5.2 Proof by Contrapositive

64

1.5.3 Proving a Logically Equivalent Statement

64

1.5.4 Proof by Contradiction

65

1.5.5 Disproving a Statement

65

Chapter 2. Properties of Real Numbers

68

2.1 Basic Algebraic Properties of Real Numbers

68

2.1.1 Properties of Addition

69

2.1.2 Properties of Multiplication

72

2.2 Ordering Properties of the Real Numbers

74

2.3 Absolute Value

76

2.4 The Division Algorithm

79

2.5 Divisibility and Prime Numbers

82

Chapter 3. Sets and Their Properties

86

3.1 Set Terminology

86

3.2 Proving Basic Set Properties

90

3.3 Families of Sets

94

3.4 The Principle of Mathematical Induction

101

3.5 Variations of the PMI

108

3.6 Equivalence Relations

114

3.7 Equivalence Classes and Partitions

120

3.8 Building the Rational Numbers

125

3.8.1 Defining Rational Equality

126

3.8.2 Rational Addition and Multiplication

127

3.9 Roots of Real Numbers

129

3.10 Irrational Numbers

130

3.11 Relations in General

134

Chapter 4. Functions

142

4.1 Definition and Examples

142

4.2 One-to-one and Onto Functions

148

4.3 Image and Pre-Image Sets

151

4.4 Composition and Inverse Functions

154

4.4.1 Composition of Functions

155

4.4.2 Inverse Functions

156

4.5 Three Helpful Theorems

158

4.6 Finite Sets

160

4.7 Infinite Sets

162

4.8 Cartesian Products and Cardinality

167

4.8.1 Cartesian Products

167

4.8.2 Functions Between Finite Sets

169

4.8.3 Applications

171

4.9 Combinations and Partitions

174

4.9.1 Combinations

174

4.9.2 Partitioning a Set

175

4.9.3 Applications

176

4.10 The Binomial Theorem

180

Part II: Basic Principles of Analysis

186

Chapter 5: The Real Numbers

188

5.1 The Least Upper Bound Axiom

188

5.1.1 Least Upper Bounds

189

5.1.2 Greatest Lower Bounds

191

5.2 The Archimedean Property

192

5.2.1 Maximum and Minimum of Finite Sets

193

5.3 Open and Closed Sets

195

5.4 Interior, Exterior, Boundary, and Cluster Points

198

5.4.1 Interior, Exterior, and Boundary

198

5.4.2 Cluster Points

199

5.5 Closure of Sets

201

5.6 Compactness

203

Chapter 6. Sequences of Real Numbers

208

6.1 Sequences Defined

208

6.1.1 Monotone Sequences

209

6.1.2 Bounded Sequences

210

6.2 Convergence of Sequences

213

6.2.1 Convergence to a Real Number

213

6.2.2 Convergence to Infinity

219

6.3 The Nested Interval Property

220

6.3.1 From LUB Axiom to NIP

221

6.3.2 The NIP Applied to Subsequences

222

6.3.3 From NIP to LUB Axiom

224

6.4 Cauchy Sequences

225

6.4.1 Convergence of Cauchy Sequences

226

6.4.2 From Completeness to the NIP

228

Chapter 7. Functions of a Real Variable

230

7.1 Bounded and Monotone Functions

230

7.1.1 Bounded Functions

230

7.1.2 Monotone Functions

231

7.2 Limits and Their Basic Properties

233

7.2.1 Definition of Limit

233

7.2.2 Basic Theorems of Limits

236

7.3 More on Limits

240

7.3.1 One-Sided Limits

240

7.3.2 Sequential Limits

241

7.4 Limits Involving Infinity

242

7.4.1 Limits at Infinity

243

7.4.2 Limits of Infinity

245

7.5 Continuity

247

7.5.1 Continuity at a Point

247

7.5.2 Continuity on a Set

251

7.5.3 One-Sided Continuity

253

7.6 Implications of Continuity

254

7.6.1 The Intermediate Value Theorem

254

7.6.2 Continuity and Open Sets

256

7.7 Uniform Continuity

258

7.7.1 Definition and Examples

259

7.7.2 Uniform Continuity and Compact Sets

262

Part III: Basic Principles of Algebra

264

Chapter 8. Groups

266

8.1 Introduction to Groups

266

8.1.1 Basic Characteristics of Algebraic Structures

266

8.1.2 Groups Defined

269

8.1.1 Basic Characteristics of Algebraic Structures

266

8.1.2 Groups Defined

269

8.2 Subgroups

275

8.2.1 Subgroups Defined

275

8.2.2 Generated Subgroups

277

8.2.3 Cyclic Subgroups

278

8.3 Quotient Groups

283

8.3.1 Integers Modulo n

283

8.3.2 Quotient Groups

286

8.3.3 Cosets and Lagrange’s Theorem

290

8.4 Permutation Groups

291

8.4.1 Permutation Groups Defined

291

8.4.2 The Symmetric Group

292

8.4.3 The Alternating Group

294

8.4.4 The Dihedral Group

296

8.5 Normal Subgroups

298

8.6 Group Morphisms

303

Chapter 9. Rings

310

9.1 Rings and Fields

310

9.1.1 Rings Defined

310

9.1.2 Fields Defined

315

9.2 Subrings

316

9.3 Ring Properties

319

9.4 Ring Extensions

324

9.4.1 Adjoining Roots of Ring Elements

324

9.4.2 Polynomial Rings

327

9.4.3 Degree of a Polynomial

328

9.5 Ideals

329

9.6 Generated Ideals

332

9.7 Prime and Maximal Ideals

335

9.8 Integral Domains

337

9.9 Unique Factorization Domains

342

9.10 Principal Ideal Domains

344

9.11 Euclidean Domains

348

9.12 Polynomials over a Field

351

9.13 Polynomials over the Integers

355

9.14 Ring Morphisms

357

9.14.1 Properties of Ring Morphisms

359

9.15 Quotient Rings

362

Index

368