Innovations in Army Energy and Power Materials Technologies

von: Shaffer, E.C.; Zheleva, T.S.

Materials Research Forum LLC, 2018

ISBN: 9781945291791 , 726 Seiten

Format: PDF

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX Apple iPad, Android Tablet PC's

Preis: 130,00 EUR

Mehr zum Inhalt

Innovations in Army Energy and Power Materials Technologies


 

front_matter

2

Innovations in Army Energy and Power Materials Technologies

2

Table of Contents

4

Preface

8

s1

18

Electrochemistry

18

1. Introduction

18

2. Overview

18

2.1 Electrochemical Energy Storage

18

2.2 Electrochemical Energy Conversion

21

2.2.1 Fuel Cells

21

2.2.1.1 Reformed Methanol Fuel Cell

21

2.2.1.2 Direct Methanol Fuel Cell

22

2.2.1.3 Reforming Battlefield Logistics Fuel for H2

22

2.2.1.4 Hybrid Acid-Alkaline Fuel Cells

22

2.2.1.6 Sunlight to H2

23

2.2.1.7 CO2 to Fuel

23

3. Summary

23

1

24

Recent Trends in Double Layer Capacitors and Dual Intercalation Batteries from Molecular Prospective

24

1. Introduction

25

2. Structural properties of electric double layer

30

3. Electrolytes in charged nanopores.

36

4. Dual-ion intercalation into graphite

40

5. Future research and concluding remarks

46

Acknowledgments

48

References

48

2

65

Importance of Reduction and Oxidation Stability of High Voltage Electrolytes and Additives

65

1. Introduction

67

2. Experimental materials

70

2.1 Materials

70

2.2 Cyclic voltammetry

70

2.3 Coin cell cycling

71

2.4 Quantum chemistry studies of lithium solvation, electrolyte reduction and oxidation

71

2.5 Quantum chemistry studies of the solvent – cathode surface interactions

73

3. Results and discussion

74

3.1 The lithium solvation shell composition and electrolyte electrochemical stability from quantum chemistry calculations

74

3.1.1 Li+ solvation shell structure

74

3.1.2 Reduction stability of electrolyte

77

3.1.3 Oxidation stability of electrolyte

80

3.2 Oxidative stability of electrolytes with different salts on glassy carbon electrodes

85

3.3 Oxidative stability of electrolytes with different solvents and additives on GC

85

3.4 Reduction of electrolytes with different salts in EC:EMC (3:7 wt%) on GC

86

3.5 Reduction of electrolytes with different solvents and additives on GC

88

3.6 Redox reactions in a full cell

89

3.7 Impact of TMSP on cycling of LNMO/graphite cells

90

4. Conclusions

92

Acknowledgements

93

References

94

3

100

Factors Limiting Li+ Charge Transfer Kinetics in Li-ion Batteries

100

1. Introduction

101

2. Li+ charge transfer process

102

3. Electrochemical charge transfer resistance

105

4. De-solvation of solvated Li+ as a rate limiting step

105

5. Li+ transport in the sei as a rate limiting step

107

6. Discussion

115

7. Conclusion

117

Acknowledgement

117

Referencs

118

4

121

In-situ and Quantitative Characterization of the Solid Electrolyte Interphase

121

1. Introduction

122

2. SEI formation and structure

123

3. Associated content

134

3.1 Supporting information: in-situ and quantitative characterization of solid

135

3.1.1 Environment

135

3.1.2 Electrolytes

135

3.1.3 Cyclic voltammetry

136

3.1.4 Atomic force microscopy

136

3.1.5 X-ray photoelectron spectroscopy

139

4. Author Contributions

142

Acknowledgements

142

References

143

5

147

LiCoPO4 5 V Li-ion Cathode

147

1. Introduction

148

2. Experimental

151

3. Results and Discussion

152

3.1 Substitutional Improvements to LiCoPO4

152

3.2 Structure of Cr and Si Substituted LiCo0.9Fe0.1PO4

153

3.3 Discharge Capacity and Cycle Life of Cr and Si Substituted LiCo0.9Fe0.1PO4

156

3.4 Specific Energy of Full 5 V Li-ion Cells

159

3.5 Rate Capability of Cr and Si Substituted LiCo0.9Fe0.1PO4

159

4. Conclusion

160

Acknowledgements

161

References

161

6

165

“Water-in-Salt” Electrolyte Enables High Voltage Aqueous Li-ion Chemistries

165

1. Introduction

166

2. Results

168

2.1 “Water-in-Salt” Electrolytes

168

2.2 A High Voltage Aqueous Li-ion Battery

170

2.3 Interphasial Chemistry and its Significance

171

Acknowledgments

177

Supplemental Materials

177

References

178

7

184

Pyrite FeS2 as an Efficient Adsorbent of Lithium Polysulfide for Improved Lithium–Sulphur Batteries

184

1. Introduction

184

2. Results and Discussion

186

3. Conclusions

190

References

191

8

195

Electrochemical Stability of Li6.5La3Zr2M0.5O12 (M = Nb or Ta) Against Metallic Lithium

195

1. Introduction

196

2. Materials and methods

197

2.1 Powder preparation

197

2.2 Densification

198

2.3 Characterization

199

3. Results and discussion

200

3.1 Materials characterization

200

3.2 Initial and after pre-conditioning electrochemical impedance

201

3.3 Cycling and electrochemical impedance

203

3.4 Characterization after cycling

204

4. Conclusions

208

Acknowledgments

208

References

209

9

213

In-Situ Studies on the Electrochemical Intercalation of Hexafluorophosphate Anion in Graphite with Selective Co-intercalation of Solvent

213

1. Introduction

214

2. Experimental

216

2.1 Materials

216

2.2 In-situ XRD

217

2.3 In-situ dilatometry

217

2.4 In-situ gravimetry

218

2.5 Ex-situ gravimetry and GC-MS

218

3. Discussion

219

4. Conclusions

232

Acknowledgment

232

References

232

10

236

Understanding Transport at the Acid-Alkaline Interface of Bipolar Membranes

236

1. Introduction

237

2. Theoretical development

240

2.1 Junction thermodynamics at thermal equilibrium

240

2.2 Thermal equilibrium & analogy to semiconductors

245

2.3 Effects of carbon dioxide and carbonates

251

2.4 Transport equations

252

2.5 Mechanisms of charge generation & recombination in the space-charge region

257

2.6 Numeric methods & solution procedures

261

3. Results & discussion

262

4. Conclusions

273

Acknowledgments

274

Symbols & Nomenclature

274

References

275

11

280

Stabilizing High-Voltage LiCoO2 Cathode in Aqueous Electrolyte with Interphase-forming Additive

280

1. Introduction

281

2. Conclusions

290

3. Experimental Section

291

3.1 Materials

291

3.2 Materials Characterizations

291

3.3 Electrochemical Measurements

291

3.4 DFT Calculation

292

Acknowledgements

292

Supplementary Information: Stabilization of High-Voltage LiCoO2 Cathode in Water-in-Salt Electrolytes

293

Reference

296

s2

300

The Power Sciences

300

1. Introduction

300

2. Overview

301

2.1 Compact Power

301

2.2 Thermal Science and Engineering

301

2.3 Wide Bandgap Materials and Devices

301

2.4 Photovoltaics

302

2.5 Thermal to Electric Energy Conversion

302

2.6 Energy-Efficient Electronics

303

3. Summary

304

References

304

12

306

Nuclear Metastables for Energy and Power: Status and Challenges

306

1. Introduction

307

2. Nuclear isomers

309

3. Isomer depletion

311

4. Isomer depletion for 108mAg and 186mRe

313

Summary

320

Acknowledgments

321

References

322

13

325

Microcombustion of Heavy Fuels for Multifuel Portable Power Generation

325

1. Introduction

326

2. Major Concepts

327

2.1 Hybrid homogeneous-homogeneous combustion

329

2.2 Heat recirculation

330

3. Approach

331

3.1 Experiments

331

3.1.1 Fully insulated Parallel Plate Reactor

331

3.1.2 High Heat Loss Slot Reactor

333

4. Major findings

334

4.1 Fully Insulated Parallel Plate Reactor

334

4.1.1 Experiments

334

4.1.2 Numerical modeling

336

4.2 High Heat Loss Slot Reactor

339

5. Discussion

343

6. Summary

346

References

347

14

353

Catalytic Oxidation of Hydrocarbons and Army Jet Fuels for Small Scale Combustion

353

1. Background

354

1.1 Surface effects (interfacial phenomena)

355

1.2 Time scaling effects

356

1.3 Flame stability and extinction characteristics in microchannel

356

2. Defense relevance

358

3. Major concepts

358

3.1 Use of a descriptor in volcano-type relationship for catalyst design

358

3.2 Use of a surrogate compound in a homologous series

359

4. Approach

360

5. Methodology

361

6. Major findings/results and discussion

363

6.1 Propane combustion

363

6.2 Dodecane and dodecane-xylene combustion

366

6.3 Jet fuels combustion

367

7. Summary

370

Acknowledgement

370

References

370

15

375

Pyroelectric Energy Conversion for Army Applications

375

1. Introduction

377

2. Pyroelectric Materials

379

2.1 Sample Preparation

379

2.2 Determination of Pyroelectric Coefficient and Dielectric Constant

380

3. Thermodynamic Theory

382

3.1 Constant Pyroelectric Coefficient Work Relationships

384

3.2 Frequency Impacts on Cycle Temperature

386

3.3 Frequency Dependent Cycle Work and Power Output

390

3.4 Frequency Impact on Thermodynamic Efficiency

390

4. Brayton Cycle Experiment

392

4.1 Energy Conversion Set-up

392

4.2 Results and Discussion

393

5. Wireless Power Transmission via Modulated Laser Irradiation

395

5.1 Fabrication and Characterization of Pyroelectric Receivers

395

5.2 Wireless Power Experiments

397

5.3 Wireless Power Transmission

400

5.4 Wireless Power Calculation

403

Conclusions

404

References

405

16

409

Novel Measurement Methods for Thermoelectric Power Generator Materials and Devices

409

1. Introduction

410

2. Novel measurements of thermal conductivity

411

2.1 Steady-state isothermal technique

411

2.1.1 Thermal conductivity of n-type half-Heusler

414

2.1.2 Thermal conductivity of PbTe

415

2.2 Scanning hot probe

416

2.3 Transient and lock-in harman techniques to decouple material ZT and thermoelectric properties

423

2.3.1 Transient harman technique – analytical model

425

2.3.2 Lock-in harman technique – analytical model

435

2.3.3 Experimental results – transient harman

437

2.3.4 Experimental results – lock-in Harman

441

3. Verification strategies for measurements

446

3.1 Slope-efficiency method: rapid measurement of device ZTmaximum.

446

3.1.1 Analysis of commercial (Bi,Sb)2(Te,Se)3 module

448

3.1.2 Analysis of PbTe/TAGS module

449

3.2 Discretized heat-balance model and analysis

450

Conclusions

455

References

456

17

461

Charged Quantum Dots for High-Efficiency Photovoltaics and IR Sensing

461

1. Introduction

462

2. 3D nanoscale potential profile in Q-BIC structures

464

3. Photoelectron kinetics in Q-BIC structures

466

4. Q-BIC solar cells and IR detectors

468

5. Conclusions

470

Acknowledgments

470

References

470

18

473

IVT Measurements of GaN Power Schottky Diodes with Drift Layers Grown by HVPE on HVPE GaN Substrates

473

1. Introduction

474

2. Experimental

475

3. Results and discussion

477

4. Conclusion

484

References

484

19

487

MEMS-Based and Switched-Capacitor Approaches for Miniature Power Supply Applications

487

1. Introduction

488

2. MEMS power passives

490

2.1 Piezoelectric RLC resonators and transformers

490

2.2 Power transfer and handling considerations

496

3. Micromachined power passives

498

3.1 Transmission-line-based power converters

498

3.2 PZT-copper implementation

498

4. 10V fully-integrated bidirectional switched capacitor ladder converter

499

4.1 High-voltage SC ladder

500

4.2 NBS cell drivers

501

4.3 Measurements

502

5. Conclusion

502

References

503

20

507

Power Management for Small Scale Systems

507

1. Introduction

508

2. Fabrication process

511

2.1 Metallization

511

2.2 Surface-mount and bare die subcomponent integration

514

2.3 Encapsulation and wafer substrate removal

515

3. Microinductor and transformer characterization

516

4. Conclusions and future work

518

Acknowledgements

518

References

518

21

520

Power Considerations for MAST Platforms

520

1. Introduction

521

2. Mobility power requirements

522

3. Small (<50 gram) power sources

525

4. MAST sub-system needs

528

5. mm-scale power delivery

530

5.1 High frequency CMOS converters

530

5.2 MEMS magnetic passives

533

5.3 MEMS piezoelectric transformers

534

6. Conclusions & future work

536

References

537

s3

540

Power Integration

540

1. Introduction

540

2. Overview

540

2.1 Wide Bandgap Devices

540

2.2 Power Conditioning and Thermal Management

542

2.3 Intelligent Energy/ Energy Networks

542

3. Summary

543

References (articles in this chapter)

544

22

546

(Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs

546

1. Introduction

547

2. Background

548

3. Basic Mechanisms at Room Temperature

549

4. Basic mechanisms at high temperature

552

5. Implications for reliability testing

558

Conclusion

559

References

560

23

566

Integrated Thermal Management for Power Electronics Packaging

566

1. Introduction

568

1.1 Power electronics applications

569

1.1.1 Vehicle power electronic applications

569

1.1.2 Vehicle cooling loop considerations

571

2. Army power electronics cooling challenges

575

2.1 Future power module performance targets

575

2.2 Standard power module configuration

577

2.3 Current power module challenges

578

2.4 Thermal challenges in power electronics packaging

580

2.4.1 1-dimensional package layer model

581

2.4.2 ANSYS Modeling Results

581

2.4.2.1 Impact of improving the backside cooling

582

2.4.2.2 Impact of adding topside cooling

583

2.5 Thermal challenge summary

584

3. ARL approaches to improving power electronics cooling

585

3.1 Advanced single phase cooling

585

3.1.1 Substrate integrated microchannel substrates

586

3.2 Diamond saw-cut ceramic microchannels

587

3.2.1 Stereolithographically defined ceramic microchannel substrates

588

3.2.2 Aluminum nitride manifold-microchannel cooling

590

3.2.3 Package integrated MEMS manifold microchannel cooler

592

3.3 Two-phase cooling

595

3.3.1 Enhanced cooling with internally-grooved tubes

596

3.3.1.1 Literature review

597

3.3.1.2 Experimental setup and flow visualization technique

598

3.3.1.3 Model development and validation

599

3.3.1.4 Cold plate design and testing

600

3.4 Thermal ground plane (TGP) heat spreaders

601

3.5 Transient thermal mitigation and phase change materials

603

3.5.1 High-rate transient heat transfer and power electronics challenges

603

3.5.2 Engineered thermal capacity – phase change material thermal buffering

607

3.5.2.1 Phase change materials, selection considerations

607

3.5.2.2 Non-ideal phase change - supercooling

610

3.5.2.3 PCM substrate integrated package design

612

3.5.2.4 PCM direct device cooling

615

3.5.3 Conclusion –transient thermal management of electronic packages

618

3.6 Multi-functional packaging design

619

3.7 ParaPower tool

622

4. Conclusions

625

Acknowledgements

625

References

626

24

631

Multi-Channel, Constant-Current Power Source for Aircraft Applications

631

1. Introduction

631

2. PDU topology

632

Summary

637

References

638

25

639

Simulation Study of Switching-Dependent Device Parameters of High Voltage 4H-SiC GTOs

639

1. Introduction

640

2. SiC SGTO device design

640

3. Mixed-mode simulation analysis

641

Summary

646

References

647

26

648

A Compact 100-A, 850-V, Silicon Carbide Solid-State DC Circuit Breaker

648

1. Introduction

649

2. Device topology

649

3. Power module design

650

4. Controller design

652

5. Pulsed current test circuits

655

6. SSCB trip response

657

Summary

659

References

660

27

661

Performance of a 1-kV, Silicon Carbide Avalanche Breakdown Diode

661

1. Introduction

662

2. SiC ABD applications and designs

662

3. SiC ABD evaluation and results

664

4. Transient thermal response

666

Summary

667

References

668

28

669

Large Chip Area SiC PiN Diodes Demonstrated for Thyristor Protection in a Pulsed System

669

1. Introduction

670

2. High voltage SiC PiN

670

3. Evaluation

672

Summary

677

References

678

29

680

Study of the Turn-on of Various High-Voltage SiC Thyristors

680

1. Introduction

681

2. Device evaluation

682

3. Minimum turn-on delay

684

4. Turn-on propagation

688

5. Peak dI/dt under fast turn-on condition

688

Summary

690

References

690

30

692

Evaluation of High-Voltage, High-Power 4H-SiC Insulated-Gate Bipolar Transistors

692

1. Introduction

693

2. High Voltage IGBT Structure

693

3. Evaluation Circuits

694

Summary

704

References

704

31

706

Electro-Thermal TCAD Model for 22 kV Silicon Carbide IGBTs

706

1. Introduction

707

2. Method

707

3. Steady-state and transient results

710

Summary

714

References

714

32

716

Development of a Compact 2-kW, 28- to 600-V DC-DC Battery Charger

716

1. Introduction

717

2. Converter design

717

3. Experimental results

721

Summary

724

References

725

back_matter

726

Keyword Index

726

About the Editors

728