Electrochemical Capacitors - Theory, Materials and Applications

von: Inamuddin

Materials Research Forum LLC, 2018

ISBN: 9781945291579 , 298 Seiten

Format: PDF

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX Apple iPad, Android Tablet PC's

Preis: 120,00 EUR

Mehr zum Inhalt

Electrochemical Capacitors - Theory, Materials and Applications


 

Cover

1

Front Matter

2

Table of Contents

6

Theory, Fundamentals and Application of Supercapacitors

8

1. Introduction

9

2. Energy needs and energy storage devices

10

3. Breakthrough in supercapacitor research

11

4. Energy storage principles: EDLC Vs pseudocapacitance

12

5. Design of Supercapacitor

13

5.1 Electrode materials

13

5.1.1 Carbon and allied materials

13

5.1.2 Conducting polymers

14

5.1.3 Metal oxides

15

5.1.4 Hybrid electrode

16

5.1.5 Mixed metal oxide electrodes

16

5.2 Electrolyte

16

5.2.1 Aqueous electrolytes

16

5.2.2 Organic electrolytes

17

5.2.3 Ionic liquid electrolytes

17

5.3 Separator

17

5.4 Different analytical techniques used for the analysis of supercapacitors

17

5.4.1 Cyclic voltammetry (CV)

17

5.4.2 Chronopotentiometry

18

5.4.3 Power density (P) and energy density (E)

18

Conclusions

19

References

19

Metal Oxides/Hydroxides Composite Electrodes for

29

1. Introduction

31

2. Classification of supercapacitors

34

2.1 Electric double-layer capacitors

34

2.2 Pseudocapacitors

34

2.3 Hybrid capacitors

35

2.3.1 Composite

35

2.3.2 Asymmetric hybrids

35

2.3.3 Battery type

35

3. Advantages and challenges of supercapacitors

38

3.1 High power density

38

3.2 Long cycle life

38

3.3 Long shelf life

38

3.4 Wide range of operating temperature

38

3.5 High efficiency

39

4. Disadvantages of supercapacitors

39

4.1 Low energy density

39

4.2 High cost

39

4.3 High self-discharging rate

39

4.4 Industrial standards for commercialization

39

5. Electrode materials for supercapacitors

40

6. Strategies to enhance the performance of supercapacitor

40

7. Factors affecting the performance of metal oxides/hydroxide based supercapacitor electrodes

41

7.1 Crystallinity

41

7.2 Crystal structure

42

7.3 Specific surface area

42

7.4 Particle size

42

7.5 Morphology

43

7.6 Electrical conductivity

43

7.7 Electrode mass loading

44

8. Metal oxide/hydroxides based supercapacitor electrodes

44

8.1 Ruthenium oxide based supercapacitors

44

8.1.1 Ruthenium oxide based composites

46

8.1.1.1 Ruthenium oxide /Carbon based composites

46

8.1.1.2 Ruthenium oxide /Polymer composites

47

8.2 Manganese Oxide based supercapacitors

48

8.2.1 Challenges for manganese oxide electrodes

49

8.2.1.1 Dissolution problem

49

8.2.1.2. Poor electrical conductivity and low surface area

50

8.2.2 Manganese oxide based composites

50

8.2.3 Manganese Oxide /Polymer composites

51

8.3 Nickel oxide based supercapacitors

52

8.4 Cobalt oxides/hydroxides based supercapacitors

53

8.5 Other metal oxides/hydroxides

55

Conclusion

56

Acknowledgement

56

References

56

Activated Carbon/Transition Metal Oxides Thin Films for

70

1. Introduction

71

2. Activated carbon

73

3. Hybrid supercapacitor

76

3.1 The behavior of various metal oxides with AC

80

3.1.1 Ruthenium oxide

80

3.1.2 Manganese oxide

80

3.1.3 Nickel oxide

80

3.1.4 Cobalt hydroxide

80

3.1.5 Vanadium oxide

80

3.1.6 Graphene oxide

81

Conclusion

81

References

81

Ultrasonic Assisted Synthesis of 2D-Functionalized

100

1. Introduction

101

2. Experimental

103

2.1 Formation of functionalized graphene oxide@ PEDOT composites

103

2.2 Instrumentation

104

3. Results and discussion

104

Conclusions

110

References

111

Advanced Supercapacitors for Alternating Current

114

1. Introduction

115

2. Macro-Supercapacitors or Supercapacitors for ac line filtering

116

3. Micro-supercapacitors for ac line filtering

122

4. Flexible-supercapacitors for ac line filtering

133

5. Printable supercapacitors for ac line filtering

137

6 Conclusion and perspectives

139

References

141

High-Performance Polymer Type Capacitors

146

1. Introduction

147

1.1 Electrochemical capacitors (Supercapacitor)

148

1.2 High-performance polymers (HPP) [ ]

152

2. HPP Type separators/electrolytes/substrates in supercapacitors

154

2.1 Fluorinated type polymers and their composites

154

2.2 Nonfluorinated polymers and their composites

159

2.2.1 Polyimides with inorganics

167

2.2.2 Polyimide (PI)/Al2O2 applications

168

2.2.3 Polyimide (PI)/SiO2applications

169

2.2.4 Polyimide (PI)/barium titanate (BaTiO3) applications

170

2.2.5 Polyimide (PI)/Cupper (Cu) based applications

172

2.2.6 Polyimide/ SnO2applications

173

2.2.7 Polyimide/Zr based applications

174

2.2.8 Polyimide/TiC, TiO2 applications

175

2.2.9 Polyimide/carbon nanotubes and carbon nanofibers

176

2.2.10 Polyimides/other inorganic ingredients

178

2.2.11 Other Nonfluorinated Polymers and their inorganic composites

180

2.3 Fluorinated and nonfluorinated polymers and their composites

182

2.4 Polyarylene ethers and their composites

186

2.5 Polyvinylpyrrolidone (PVP) based applications

189

2.6 Carbohydrate polymers

192

3. Challenges and future directions

195

Conclusions

199

References

200

Hydrothermal Synthesis of Supercapacitors Electrode Materials

216

1. Introduction

217

2. Supercapacitor

218

2.1 Types of supercapacitors

218

2.2 Evaluation of supercapacitor performance

219

2.3 Challenges to supercapacitors

220

2.4 Applications of supercapacitors

221

3. Hydrothermal Method

221

3.1 What is hydrothermal technique?

221

3.2 Carbonaceous materials

222

3.3 Metal oxides/hydroxides

223

3.3 Composites

228

Conclusion

233

Acknowledgement

234

References

234

Electrochemical Super Capacitors Fabricated by the

243

1. Introduction

244

1.1 Principle of supercapacitors

245

1.2 Layer-by-layer assembly (LbL) techniques

246

1.2.1 Dip assisted, spin assisted and spray assisted

247

2. Appropriate materials for supercapacitors

248

2.1 Graphene and graphene oxide (GO)

248

2.2 Polyaniline (PANI)

249

2.3 Metal hydroxides-cobalt based capacitors

249

2.4 CNT

250

2.5 Metal oxides

250

2.6 Cellulose nanofibers (CNFs)

250

2.7 Conducting polymers

251

2.8 Hybrid materials

251

3. Supercapacitors fabricated by LbL assembly

251

3.1 Reduced GO-PANI composite

251

3.2 GO-propylpyridinium silsesquioxane chloride polymer

254

3.3 Reduced GO-MnO2 nano?owers

255

3.4 Reduced GO-CNFs- PANI

258

3.5 Reduced GO-MnO2-SILAR method

260

3.6 Reduced GO-magnetite

262

3.7 Polymer film

262

Conclusion

264

References

264

Graphene-based Composites: Present, Past and Future for Supercapacitors

270

1. Introduction and background

271

2. Graphite, graphite oxide and graphene

274

3. Graphene-based composites for supercapacitors

277

3.1 Energy applications

277

3.2 Past, present, and future

278

4. Conclusion

288

References

289

Keyword Index

295

About the Editors

296