Computed Tomography - From Photon Statistics to Modern Cone-Beam CT

von: Thorsten M. Buzug

Springer-Verlag, 2008

ISBN: 9783540394082 , 522 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 90,94 EUR

Mehr zum Inhalt

Computed Tomography - From Photon Statistics to Modern Cone-Beam CT


 

Preface

5

Contents

8

1 Introduction

13

1.1 Computed Tomography – State of the Art

13

1.2 Inverse Problems

14

1.3 Historical Perspective

16

1.4 Some Examples

19

1.5 Structure of the Book

23

2 FundamentalsofX-rayPhysics

26

2.1 Introduction

26

2.2 X- ray Generation

26

2.3 Photon–Matter Interaction

42

2.4 Problems with Lambert–Beer’s Law

57

2.5 X- ray Detection

59

2.6 X- ray Photon Statistics

70

3 Milestones of Computed Tomography

85

3.1 Introduction

85

3.2 Tomosynthesis

86

3.3 Rotation– Translation of a Pencil Beam(First Generation)

89

3.4 Rotation– Translation of a Narrow Fan Beam (Second Generation)

93

3.5 Rotation of aWide Aperture Fan Beam ( Third Generation)

94

3.6 Rotation–Fix with Closed Detector Ring (Fourth Generation)

97

3.7 Electron BeamComputerized Tomography

99

3.8 Rotation in Spiral Path

100

3.9 Rotation in Cone-BeamGeometry

101

3.10 Micro- CT

103

3.11 PET- CT Combined Scanners

106

3.12 Optical Reconstruction Techniques

108

4 Fundamentals of Signal Processing

110

4.1 Introduction

111

4.2 Signals

111

4.3 Fundamental Signals

111

4.4 Systems

113

4.5 Signal Transmission

115

4.6 Dirac’s Delta Distribution

118

4.7 Dirac Comb

121

4.8 Impulse Response

124

4.9 Transfer Function

125

4.10 Fourier Transform

127

4.11 Convolution Theorem

133

4.12 Rayleigh’s Theorem

134

4.13 Power Theorem

134

4.14 Filtering in the Frequency Domain

135

4.15 Hankel Transform

137

4.16 Abel Transform

141

4.17 Hilbert Transform

142

4.18 Sampling Theoremand Nyquist Criterion

144

4.19 Wiener–Khintchine Theorem

150

4.20 Fourier Transform of Discrete Signals

153

4.21 Finite Discrete Fourier Transform

154

4.22 z- Transform

156

4.23 Chirp z- Transform

157

5 Two-Dimensional Fourier-Based ReconstructionMethods

160

5.1 Introduction

160

5.2 Radon Transformation

162

5.3 Inverse Radon Transformation and Fourier Slice Theorem

172

5.4 Implementation of the Direct Inverse Radon Transform

176

5.5 LinogramMethod

179

5.6 Simple Backprojection

184

5.7 Filtered Backprojection

188

5.8 Comparison Between Backprojection and Filtered Backprojection

192

5.9 Filtered Layergram: Deconvolution of the Simple Backprojection

196

5.10 Filtered Backprojection and Radon’s Solution

200

5.11 Cormack Transform

203

6 Algebraic and Statistical ReconstructionMethods

210

6.1 Introduction

210

6.2 Solution with Singular Value Decomposition

216

6.3 Iterative Reconstruction with ART

220

6.4 Pixel Basis Functions and Calculation of the SystemMatrix

227

6.5 Maximum Likelihood Method

232

7 Technical Implementation

250

7.1 Introduction

250

7.2 Reconstruction with Real Signals

251

7.3 Practical Implementation of the Filtered Backprojection

264

7.4 Minimum Number of Detector Elements

267

7.5 Minimum Number of Projections

268

7.6 Geometry of the Fan-Beam System

270

7.7 Image Reconstruction for Fan-Beam Geometry

271

7.8 Quarter-Detector Offset and Sampling Theorem

302

8 Three-Dimensional Fourier-Based ReconstructionMethods

311

8.1 Introduction

311

8.2 Secondary Reconstruction Based on 2D Stacks of Tomographic Slices

312

8.3 Spiral CT

317

8.4 Exact 3D Reconstruction in Parallel-Beam Geometry

329

8.5 Exact 3D Reconstruction in Cone-Beam Geometry

344

8.6 Approximate 3D Reconstructions in Cone-BeamGeometry

374

8.7 Helical Cone-Beam Reconstruction Methods

402

9 Image Quality and Artifacts

410

9.1 Introduction

410

9.2 Modulation Transfer Function of the Imaging Process

411

9.3 Modulation Transfer Function and Point Spread Function

417

9.4 Modulation Transfer Function in Computed Tomography

419

9.5 SNR, DQE, and ROC

428

9.6 2D Artifacts

430

9.7 3D Artifacts

452

9.8 Noise in Reconstructed Images

469

10 Practical Aspects of Computed Tomography

477

10.1 Introduction

477

10.2 Scan Planning

477

10.3 Data Representation

481

10.4 Some Applications in Medicine

488

11 Dose

491

11.1 Introduction

491

11.2 Energy Dose, Equivalent Dose, and Effective Dose

492

11.3 Definition of Specific CT Dose Measures

493

11.4 Device-Related Measures for Dose Reduction

499

11.5 User-Related Measures for Dose Reduction

505

References

509

Subject Index

516