Analog Circuit Design - Smart Data Converters, Filters on Chip, Multimode Transmitters

Analog Circuit Design - Smart Data Converters, Filters on Chip, Multimode Transmitters

von: Arthur van Roermund, Herman Casier, Michiel Steyaert

Springer-Verlag, 2009

ISBN: 9789048130832 , 342 Seiten

Format: PDF

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's

Preis: 149,79 EUR

Mehr zum Inhalt

Analog Circuit Design - Smart Data Converters, Filters on Chip, Multimode Transmitters


 

Analog Circuit Design

Analog Circuit Design

Preface

Preface

Series on Integrated Circuits and Systems

4

Part I Smart Data Converters

8

1 LMS-Based Digital Assisting for Data Converters

9

1.1 Introduction

9

1.2 High-Resolution ADCs

10

1.3 Limits of ADC Resolution

13

1.4 Zero-Forcing LMS Algorithm

14

1.5 LMS-Based Calibration of the Pipelined ADC

15

1.5.1 Measurement Time and Dither Magnitude Constraints

16

1.5.2 Signal-Dependent Dithering Under Two Constraints

17

1.5.3 Linearity Improvement

19

1.5.4 Opamp Non-linearity Calibration

20

1.6 Noise Leakage Calibration in CT Cascaded Modulator

21

1.6.1 CT-to-DT Transform

22

1.6.2 Calibrated Cascaded Modulator

23

1.7 Conclusions

25

References

26

2 Pipelined ADC Digital Calibration Techniques and Tradeoffs

28

2.1 Introduction

28

2.2 Review of Error Sources in Pipelined ADCs

29

2.2.1 Gain Errors

29

2.2.2 DAC Errors

31

2.3 Digital Calibration Techniques

31

2.3.1 Digital Gain Error Calibration

32

2.3.2 DAC Gain Error Calibration

32

2.3.3 Foreground Calibration Techniques

33

2.3.4 Background Calibration

34

2.4 Rapid Background Calibration Techniques

35

2.4.1 Slow but Accurate Parallel ADC

35

2.4.2 Split-ADC Gain Error Calibration

36

2.4.3 Rapid DAC and Gain Error Correction

37

2.5 Using Digital Calibration to Build Low Power `Smart-ADCs'

41

2.5.1 Open Loop, Non-linear Gain Error Calibration

41

2.5.2 Capacitive Charge Pump Based Pipelined ADC

43

2.6 Summary

46

References

46

3 High-Resolution and Wide-Bandwidth CMOS Pipeline AD Converters

48

3.1 Introduction

48

3.2 Digital Calibration of Non-Linearity

50

3.2.1 DAC Non-linearity

51

3.2.2 Stage Gain Non-linearity

52

3.3 Range-Scaling in the First Pipeline Stage

53

3.3.1 Power Consumption in a Noise-Limited ADC

53

3.3.2 Circuit Implementation

54

3.4 SHA-Less Architecture

55

3.5 A 1.2V 14b 100MS/s ADC in 90nm CMOS

56

3.5.1 ADC Architecture

57

3.5.2 Measured Results

58

3.6 Conclusions

63

References

63

4 A Signal Processing View on Time-Interleaved ADCS

65

4.1 Introduction

65

4.2 Time-Interleaved ADCs

66

4.3 Modeling Time-Interleaved ADCs

67

4.4 Digital Calibration of Linear Channel Mismatches

70

4.4.1 Digital Correction Methods

71

4.4.1.1 Time Offset Mismatches

72

4.4.1.2 Frequency Response Mismatches

75

4.4.2 Digital Identification Methods

77

4.4.2.1 Off-line Identification

78

4.4.2.2 On-line Identification

79

4.5 Conclusions

81

References

81

5 DAC Correction and Flexibility, Classification, New Methods and Designs

83

5.1 Introduction

83

5.2 Correction Methods for Current-Steering DACs

84

5.2.1 Classification

84

5.2.2 New Correction Methods Based on Parallel Sub-DACs

87

5.2.2.1 New Method 1: High Level Mapping

87

5.2.2.2 New Method 2: Suppression of Harmonic Distortion

88

5.2.2.3 New Method 3: Self-Calibration of Binary Currents

90

5.3 Analysis of DAC Self-Calibration Methods

91

5.3.1 Self-Measurement Block

91

5.3.2 Algorithm Block

92

5.3.3 Self-Correction Block

94

5.4 Parallel Current-Steering DACs for Flexibility and Smartness

95

5.5 Design Examples and Measurements

97

5.5.1 Unary Currents Self-Calibration in a 12-bit 250nm DAC

97

5.5.2 Both Unary and Binary Currents Self-Calibration in a 12-bit 180nm Quad-Core Flexible DAC

102

5.6 Conclusions

106

References

108

6 Smart CMOS Current-Steering D/A-Converters for Embedded Applications

110

6.1 Introduction

110

6.2 A Multimode -DAC

112

6.3 A 13-b 200MS/s Background-Calibrated DAC

116

6.3.1 Converter Architecture

117

6.3.2 Segment Boundary Calibration

118

6.3.3 Randomization of the Calibration Period

120

6.3.4 Low-Bandwidth High-Resolution Mode

121

6.4 A 13-b 50MHz Bandwidth DAC with Active Output Stage

123

6.4.1 Converter Architecture

124

6.4.2 Direct Segment Calibration

124

6.5 Conclusions

128

References

128

Part II Filters On-Chip

130

7 Synthesis of Low-Sensitivity Analog Filters

131

7.1 Introduction

131

7.2 Passive Filters

132

7.2.1 Doubly Resistively Terminated Lossless Networks

132

7.2.2 Reflection Function

133

7.2.3 Sensitivity

134

7.2.4 Passband Sensitivity

134

7.3 Errors in the Elements in Doubly Terminated Filters

138

7.3.1 Errors in the Terminating Resistors

140

7.3.2 Effects of Lossy Elements

141

7.4 LC Filters with Diminishing Ripple

142

7.5 Approximations with Small Group Delay

143

7.6 Design of Doubly Terminated LC Filters

146

7.7 Conclusions

147

References

147

8 High-Performance Continuous-Time Filters with On-Chip Tuning

148

8.1 Introduction

148

8.2 Linear Operational Transconductance Amplifiers (OTAs)

149

8.2.1 Advanced Linearization Techniques

150

8.2.2 OTA Linearization Using Non-linear Elements

151

8.2.3 Design Example: A 30-MHz Elliptic Filter

154

8.3 Broadband Tuning for Interference Suppression in UWB Receivers

155

8.3.1 Analog LMS Control for Maximizing Attenuation

158

8.3.2 Interference Detection and Center Frequency Tuning

160

8.3.3 Experimental Results

161

8.4 Calibration of the Noise Transfer Function in a BP Modulator

162

8.5 Conclusion

165

References

166

9 Source-Follower-Based Continuous Time Analog Filters

168

9.1 Introduction

168

9.2 Source-Follower Circuit

170

9.3 A Source-Follower-Based Cascade CT Filter

172

9.3.1 Linearity Performance

174

9.3.2 Noise Performance

175

9.3.3 DC-Gain Loss

175

9.3.4 Minimum Supply Voltage

176

9.3.5 Silicon Prototype Experimental Results: A Fourth-Order Cascade SFB CT Filter for WLAN Receivers

176

9.4 A Source-Follower-Based Ladder CT Filter

180

9.4.1 Filter Circuital Topology

182

9.4.2 Minimum Supply Voltage

182

9.4.3 Silicon Prototype Experimental Results: A Sixth-Order Ladder SFB CT Filter for UWB Receivers

182

9.5 Conclusions

186

References

187

10 Reconfigurable Active-RC Filters with High Linearity and Low Noise for Home Networking Applications

189

10.1 Introduction

189

10.2 Architecture Selection

190

10.3 Architectural-Level Design Considerations

192

10.3.1 Optimized for Noise

192

10.3.2 Optimized for Speed

192

10.3.3 Optimized for Linearity

193

10.4 Circuit-Level Design Considerations

193

10.4.1 Reconfigurable Filter and Gain Stages

194

10.4.2 PGA Opamps with Adaptive Compensation

195

10.4.3 Tuning Loops

196

10.5 Experimental Results

197

10.6 Conclusions

201

References

201

11 On-Chip Instantaneously Companding Filters for Wireless Communications

203

11.1 Introduction

203

11.2 Companding Switched Capacitor Filter Implementation

205

11.3 Opamp's DC Offset Cancellation

211

11.4 WLAN Receiver Baseband Signal Chain

214

11.5 Simulation Results

215

11.6 Summary

217

References

218

12 BAW-IC CO-Integration Tunable Filters at GHz Frequencies

219

12.1 Introduction

219

12.2 BAW Technology

220

12.2.1 BAW Resonators

220

12.2.2 Electromechanical and Electrical Model of a BAW Resonator

221

12.3 BAW Resonator Filters

222

12.3.1 BAW Ladder Filters

223

12.3.2 BAW Lattice Filters

223

12.3.3 BAW Filters Synthesis Method

225

12.4 Tunable BAW Resonators

226

12.5 Design of an Electronically Tunable BAW Filter for Zero IF W-CDMA Receivers

228

12.5.1 BAW Tuning Cell Implementation

229

12.5.2 BAW Filter Implementation

231

12.5.3 BAW Filter Measurement Results

233

12.6 Tuning Circuitry for BAW Filters

234

12.6.1 Preliminary Discussion

234

12.6.2 Indirect Tuning Method I: PLL with a VCO as Master Cell

236

12.6.3 Indirect Tuning Method II: FLL with Envelope Detection

237

12.7 Design of a Digital Tuning Circuitry for a BAW Tunable Filter

238

12.7.1 Circuit Implementation

239

12.7.2 Measurement Results

240

12.8 Conclusions and Perspectives

242

References

243

Part III Multi-mode Transmitters

245

13 Multimode Transmitters: Easier with Strong Nonlinearity

247

13.1 Introduction

247

13.2 Architecture

248

13.3 Design Issues

249

13.4 Performance Measurements

253

13.5 Conclusions

256

References

257

14 RBS High Efficiency Power Amplifier Research – Challenges and Possibilities

258

14.1 Introduction

258

14.2 Power Amplifier Efficiency in an RBS Transmitter Context

259

14.3 Software Defined Radio (SDR) RBS

260

14.3.1 SDR RBS

260

14.4 Wide RF Bandwidth Power Amplifier Design

261

14.5 Efficiency Enhancement Techniques

263

14.5.1 Envelope Tracking Transmitter Architecture

265

14.5.2 Third Order Doherty

266

14.5.3 Pulsed Transmitter Architectures

267

14.5.3.1 Three Examples of Pulsed Transmitter Architectures

269

Baseband or Envelope PM

269

Cartesian PM

269

RF PM

270

14.5.3.2 Efficient Filtering of the Residual Quantization Distortion

271

14.6 Conclusions

271

References

272

15 Multi-Mode Transmitters in CMOS

273

15.1 Introduction

273

15.2 Direct Quadrature Voltage Modulator for Cellular Applications

274

15.2.1 Direct Quadrature Voltage Modulator

275

15.2.2 25% Duty-Cycle LO Generation

277

15.2.3 Measurement Results

278

15.3 Digital Polar Transmitter for Connectivity Applications

281

15.3.1 Direct Digital Polar Transmitter

284

15.3.2 Multi-phase Clocking

285

15.3.3 IC Implementation

286

15.3.4 Measurement Results

289

15.4 Conclusions

291

References

291

16 Challenges for Mobile Terminal CMOS Power Amplifiers

293

16.1 Introduction

293

16.2 Efficiency Improvement Techniques

294

16.3 Changing the RF Path

294

16.3.1 Discrete Class B

296

16.3.2 Power Combining

296

16.4 Changing the BB Path

298

16.4.1 Digital Polar

300

16.5 Conclusions

301

References

301

17 Multimode Transmitters with -Based All-Digital RF Signal Generation

303

17.1 Introduction

303

17.2 Modulation for All-Digital RF Signal Generation

305

17.2.1 What Can Modulation Bring in Integrated Transmitters?

305

17.2.2 IF DAC

306

17.2.3 1-bit RF DAC

306

17.2.4 Multi-bit RF DAC

307

17.3 Switched Power Amplification

308

17.3.1 Current and Voltage-Mode Switched Power Amplifier

308

17.3.2 Power Combining

309

17.4 Discussion on Digital and Mixed-Signal Blocks Implementation

311

17.4.1 Oversampling Up to RF Frequencies

311

17.4.2 Sampling Clock Synchronization on RF LO

311

17.4.3 Implementing the Modulator

312

17.4.3.1 Pipelined MASH Structures

312

17.4.3.2 High-Speed Modulator Implementation Using Redundant Representation

313

17.4.3.3 Going Further: Adaptive Placement of Complex Poles and Zeros of the NTF

314

17.4.4 Mixer and Digital-to-Analog Conversion

315

17.5 Dealing with Quantization Noise

316

17.5.1 BAW Filtering

316

17.5.2 RF Semi-Digital FIR Filtering

317

17.6 Conclusion

319

References

320

18 Switched Mode Transmitter Architectures

322

18.1 Introduction

322

18.2 Power Amplifiers

325

18.3 Envelope Modulation Techniques

327

18.4 Polar Switched Mode Architectures

329

18.5 Cartesian Switched Mode Architectures

333

18.6 RF Pulse Width Modulators

334

18.7 Delta-Sigma RF Pulse Width Modulation

335

18.8 Conclusions

338

References

338