Image-Based Computational Modeling of the Human Circulatory and Pulmonary Systems - Methods and Applications

Image-Based Computational Modeling of the Human Circulatory and Pulmonary Systems - Methods and Applications

von: Krishnan B. Chandran, H. S. Udaykumar, Joseph M. Reinhardt

Springer-Verlag, 2010

ISBN: 9781441973504 , 465 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 149,79 EUR

Mehr zum Inhalt

Image-Based Computational Modeling of the Human Circulatory and Pulmonary Systems - Methods and Applications


 

Foreword

6

Preface

8

Contents

13

Contributors

15

Part I Cardiac and Pulmonary Imaging, Image Processing, and Three-Dimensional Reconstruction in Cardiovascular and Pulmonary Systems

19

1 Image Acquisition for Cardiovascular and Pulmonary Applications

20

1.1 Introduction to Imaging

20

1.1.1 Invasive Techniques

22

1.1.2 Role of Noninvasive Imaging

22

1.2 Ultrasound/Echocardiography

23

1.2.1 Principles of Ultrasound

23

1.2.1.1 M-Mode

25

1.2.1.2 2D Ultrasound

26

1.2.2 Echocardiography

27

1.2.2.1 Morphologic Imaging

27

1.2.2.2 Function

28

1.2.2.3 Flow (Doppler)

28

1.2.2.4 TTE Versus TEE

29

1.2.3 Vascular/Peripheral

30

1.3 Computed Tomography (CT)

31

1.3.1 Principles of CT

31

1.3.1.1 Basic CT

32

1.3.1.2 Multidetector CT

33

1.3.2 Cardiac CT

34

1.3.2.1 Coronary Arteries

34

1.3.2.2 Aorta

35

1.3.2.3 Cardiac Function

35

1.3.3 Pulmonary CT

36

1.3.3.1 Parenchyma

36

1.3.3.2 Pulmonary Angiography

37

1.4 Magnetic Resonance Imaging (MRI)

37

1.4.1 Principles of MRI

37

1.4.1.1 Signal Generation

38

1.4.1.2 General Techniques and Contrast Mechanisms

38

1.4.1.3 Morphology

39

1.4.1.4 Function

40

1.4.1.5 Perfusion/Ischemia

42

1.4.2 MR Angiography

43

1.4.3 Pulmonary MRI: Emerging Techniques

45

1.5 Other Techniques

47

1.5.1 SPECT

47

1.5.2 PET

48

1.6 Summary

49

References

49

2 Three-dimensional and Four-dimensional Cardiopulmonary Image Analysis

51

2.1 Introduction

51

2.2 Segmentation and Modeling Methodology

52

2.2.1 Active Shape and Appearance Models

52

2.2.1.1 Building a 3D Statistical Shape Model

53

2.2.1.2 Extension to Higher Dimensions

54

2.2.1.3 Combining Shape and Appearance

54

2.2.1.4 Robust ASM and AAM Implementations

55

2.2.2 Region Growing and Fuzzy Connectivity Segmentation

56

2.2.2.1 Region Growing

56

2.2.2.2 Fuzzy Connectivity-Based Segmentation

57

2.2.3 Graph-Based Segmentation

58

2.2.3.1 Approaches Based on Rectangular Graph Structures

58

2.2.3.2 Minimum-Cut Approaches

61

2.2.3.3 Cost Functions

62

2.3 Cardiac Applications

63

2.3.1 Modeling and Quantitative Analysis of the Ventricles

64

2.3.1.1 Manual Ventricle Segmentation

64

2.3.1.2 3D Shape Generation

66

2.3.2 Tetralogy of Fallot Classification

68

2.3.2.1 Study Population and Experimental Methods

69

2.3.2.2 Novel Ventricular Function Indices

70

2.4 Vascular Applications

71

2.4.1 Connective Tissue Disorder in the Aorta

71

2.4.1.1 4D Segmentation of Aortic MR Image Data

72

2.4.1.2 Disease Detection

74

2.4.1.3 Accuracy of Segmentation and Classification

75

2.4.2 Aortic Thrombus and Aneurysm Analysis

76

2.4.2.1 Initial Luminal Surface Segmentation

78

2.4.2.2 Graph Search and Cost Function Design

79

2.4.2.3 Data and Results

80

2.4.3 Plaque Distribution in Coronary Arteries

83

2.4.3.1 Segmentation and 3D Fusion

84

2.4.3.2 Hemodynamic and Morphologic Analysis

88

2.4.3.3 Studies and Results

89

2.5 Pulmonary Applications

91

2.5.1 Segmentation and Quantitative Analysis of Airway Trees

92

2.5.1.1 Airway Tree Segmentation

93

2.5.1.2 Quantitative Analysis of Airway Tree Morphology

95

2.5.2 Quantitative Analysis of Pulmonary Vascular Trees

98

2.5.3 Segmentation of Lung Lobes

104

2.6 Discussions and Conclusions

107

References

108

Part II Computational Techniques for Fluid and Soft Tissue Mechanics, FluidStructure Interaction, and Development of Multi-scale Simulations

119

3 Computational Techniques for Biological Fluids: From Blood Vessel Scale to Blood Cells

120

3.1 Introduction

120

3.2 Computational Methods for Macro-scale Hemodynamics

121

3.2.1 Governing Equations

121

3.2.1.1 The Fluid Flow Equations

121

3.2.1.2 The Structural Equations

123

3.2.1.3 Boundary Conditions at the Fluid--Structure Interface

126

3.2.2 Numerical Methods for Flows with Moving Boundaries

126

3.2.2.1 Boundary-Conforming Methods

127

3.2.2.2 Non-boundary-Conforming Methods

129

3.2.2.3 Hybrid Methods: Body-Fitted/Immersed Boundary Methods

133

3.2.3 Fluid--Structure Interaction Algorithms

133

3.2.3.1 Loose and Strong Coupling Strategies

134

3.2.3.2 Stability and Robustness Issues

135

3.2.4 Efficient Solvers for Physiologic Pulsatile Simulations

136

3.2.5 High-Resolution Simulations of Cardiovascular Flow

137

3.2.5.1 Fluid--Structure Interaction Simulations of Mechanical Bileaflet Heart Valves

137

3.2.5.2 Numerical Simulations of Trileaflet Heart Valve Hemodynamics

139

3.3 Computational Methods for Blood Cell Scale Simulations

142

3.3.1 Background

142

3.3.2 Review of Numerical Methods for Blood Cell-Resolving Simulations

142

3.3.2.1 Boundary-Integral Methods for Cell-Level Simulation

143

3.3.2.2 Immersed Boundary Method

144

3.3.2.3 Particle Methods

144

3.3.2.4 Lattice Boltzmann

145

3.3.3 Lattice-Boltzmann Methodology

145

3.3.3.1 Lattice-Boltzmann BGK (LBGK) Model for Fluid Flow

145

3.3.3.2 Transient Finite-Element FSI Model

146

3.3.4 Membrane Models

151

3.3.4.1 Comparison of Red Blood Cell Models

154

3.3.5 Rheology, Stress, and Microstructure of Blood

154

3.3.5.1 Bulk Rheology

155

3.3.5.2 Shear-Thinning Behavior

156

3.3.5.3 Microstructure

158

3.3.5.4 Local Stress Environment in Blood

161

3.4 Future Directions

162

References

163

4 Formulation and Computational Implementation of Constitutive Models for Cardiovascular Soft Tissue Simulations

171

4.1 Introduction

171

4.2 Constitutive Models for Cardiovascular Soft Tissues

173

4.2.1 Condition Number of D

176

4.3 Structural Constitutive Models

177

4.4 Finite-Element Implementation

181

4.4.1 Fung Model Implementation Example

184

4.4.2 Biaxial Testing Simulations

184

4.4.3 Prosthetic Valve Simulations

187

4.4.4 Engineered Heart Valve Leaflet Tissue Simulations

189

4.5 Finite-Element Models of Heart Valve Leaflets

193

4.5.1 Degenerate Solid Shell

194

4.5.2 Element Pathology

195

4.5.3 Stress-Resultant Shell

196

4.5.4 Continuum Shell

198

4.6 Summary

198

4.7 Appendix: Shell Kinematics

199

References

201

5 Algorithms for Fluid Structure Interaction

205

5.1 Introduction

205

5.1.1 Key Aspects of Fluid--Structure Interaction Problems

206

5.2 Governing Equations and Important Parameters

207

5.3 Spatial Discretization to Couple Fluid and Solid Dynamics

209

5.4 ALE-Type Methods

210

5.5 Immersed Boundary Method

210

5.6 Immersed Interface Method

212

5.7 Sharp Interface Method

213

5.8 Finite Element Methods

216

5.9 Fictitious Domain Method

216

5.10 Immersed Finite Element Methods

216

5.11 Issues Related to the Temporal Update of the Coupled FluidSolid System

217

5.12 Numerical Stiffness

217

5.13 Material Density and Slenderness

220

5.14 Rapidity of Motion and Deformation

221

5.15 Techniques for Coupling of the Temporal Update of the Fluid and Solid Subsystems

221

5.16 Weak and Strong Coupling Algorithms

222

5.17 Three Different Approaches to FSI Modeling in Biomedical Applications

224

5.17.1 FSI Approach 1

224

5.17.1.1 Results

227

5.17.2 FSI Approach 2

228

5.17.2.1 Results

230

5.17.3 FSI Approach 3

232

5.18 Modeling of Mechanical Heart Valves

235

5.19 Leaflet Rebound

236

5.19.1 Results

237

5.20 Effect of Flow During Closure and Rebound Phases

237

5.21 Modeling of Tissue Heart Valves

239

5.21.1 Challenges in Modeling Tissue Heart Valves

239

5.21.1.1 Results of Simulations

240

5.22 Concluding Remarks

244

References

244

6 Mesoscale Analysis of Blood Flow

249

6.1 Introduction

249

6.2 Scaling Estimates

252

6.3 Modeling Adhesion Force Between Blood Cells

254

6.4 Microscale Modeling: Deformable Blood Cells

260

6.5 Mesoscale Modeling Using the Discrete Element Method

263

6.6 Mesoscale Modeling Using Dissipative Particle Dynamics

269

6.7 Bridging the Scales

274

References

275

Part III Applications of Computational Simulations in the Cardiovascular and Pulmonary Systems

281

7 Arterial Circulation and Disease Processes

282

7.1 Introduction

282

7.2 Artery Wall Structure

284

7.3 Endothelium

285

7.4 Mechanical Forces on the Arterial Wall

286

7.5 Wall Shear Stress

287

7.6 Mechanisms of Disease Formation

287

7.7 Flow in Small Vessels Hemodynamic Modelling of Coronary Flows

288

7.8 The Influence of Wall Motion

289

7.9 Boundary Conditions for Coronary Flows

289

7.10 Velocity

290

7.11 Outlet Boundary Conditions for Coronary Flows

291

7.12 Numerical Model Development

291

7.13 Coronary Flow Analysis

292

7.14 Steady Flow in the Right Coronary Artery

292

7.15 Pulsatile Flow in the Right Coronary Artery

294

7.16 Steady Flow in the Left Coronary Artery

294

7.17 Pulsatile Flow in the Left Coronary Artery

297

7.18 Discussion

299

7.19 Flow in Large Vessels Hemodynamic Modeling of Aortic Flows

300

7.20 Boundary Conditions

301

7.21 Steady-Flow Boundary Conditions

302

7.22 Steady Flow Realistic Model

303

7.23 Influence of Steady Input Boundary Conditions

306

7.24 Pulsatile Flow in a Bifurcation

307

7.25 Geometrical Effects

307

7.26 Geometrical Differences Associated with the Realistic and Idealized AAA Models

310

7.27 Treatment of Arterial Disease

312

7.27.1 Vascular Aneurysm Grafting

313

7.27.2 Vascular Bypass Grafting

314

7.28 Future Trends in Vascular and Cardiovascular Disease Modeling

318

References

319

8 Biomechanical Modeling of Aneurysms

325

8.1 Introduction

325

8.1.1 Incidence and Epidemiology

325

8.1.2 Role for Biomechanical Modeling and Simulation

326

8.2 Geometric Modeling of Aneurysms

327

8.2.1 Abdominal Aortic Aneurysms

328

8.2.2 Cerebral Aneurysms

330

8.2.3 Summary

333

8.3 Material Modeling of Aneurysms

333

8.3.1 Abdominal Aortic Aneurysms

334

8.3.2 Cerebral Aneurysms

335

8.4 Computational Simulations of Intra-aneurysmal Hemodynamics

336

8.4.1 Abdominal Aortic Aneurysm

336

8.4.2 Cerebral Aneurysms

337

8.4.3 Challenges in Aneurismal Hemodynamic Simulations

339

8.5 Computational Estimations of Aneurysmal Wall Stress and Strain

339

8.5.1 Abdominal Aortic Aneurysm

340

8.5.2 Cerebral Aneurysms

343

8.6 FluidStructure Interaction Studies

344

8.7 Framework for Biomechanical Modeling of Growth and Remodeling

345

8.8 Future Directions

348

References

349

9 Advances in Computational Simulations for Interventional Treatments and Surgical Planning

354

9.1 Introduction

354

9.2 Analysis for Endovascular Treatment and Device Design

356

9.2.1 Introduction

356

9.2.2 Identification of Vulnerable Plaque

356

9.2.3 Endovascular Balloon Angioplasty

357

9.2.4 Endovascular Stents

357

9.3 Patient-Specific Surgical Planning

360

9.3.1 Single-Ventricle Heart Defects: Review of the Clinical Problem

361

9.3.2 Comparing Global Outcome and Cardiovascular Function

363

9.3.3 Comparing Performances of Different Design Variations

364

9.3.3.1 Patient Data Acquisition

364

9.3.3.2 Anatomy Reconstruction and Surrounding Organs Representation

366

9.3.3.3 Modeling the Intervention

367

9.3.3.4 Fast Performance Estimation and Optimization Using 1D FEA Modeling

369

9.3.3.5 Full Postoperative Hemodynamics Characterization and Optimization Using 3D CFD

370

9.3.3.6 Automated Optimization Methods Using 3D CFD

372

9.4 Including Surrounding Organs

373

9.4.1 Geometric Constraints of the Modified Configuration

373

9.4.2 Adapting the Boundary Conditions to the Modified Configuration

374

9.4.2.1 Inlet and Outlet Boundary Conditions

374

9.4.2.2 Material Properties

376

9.5 Future Direction for Biomedical Simulations

376

References

379

10 Computational Analyses of Airway Flow and Lung Tissue Dynamics

385

10.1 Introduction

385

10.2 Basic Anatomy and Physiology

386

10.3 Respiratory Mechanics

387

10.4 Mechanical Input Impedance

391

10.4.1 Inverse Modeling of Respiratory Mechanics

392

10.5 Forward Morphometric Models of the Respiratory System

394

10.5.1 Computational Modeling Example: Airway Thermodynamics in Symmetric and Anatomical Models

398

10.6 Application of Morphometric Models to Computational Studies of Lung Mechanics

399

10.7 Imaging Methodology

400

10.8 Image-Based Computational Models

401

10.8.1 Insights into Bronchoconstriction: Airways and Interdependence

401

10.8.2 Regional Tissue Mechanics

404

10.9 Conclusions

406

References

406

11 Native Human and Bioprosthetic Heart Valve Dynamics

413

11.1 Human Heart Valves

413

11.2 Aortic Valve

415

11.3 Mitral Valve

417

11.4 Diseases of the Heart Valves

419

11.5 Biological Valve Prostheses

419

11.6 Experimental Studies on Valve Dynamics

421

11.7 Three-Dimensional Geometrical Reconstruction of the Aortic and Mitral Valves

424

11.7.1 3D Echocardiography

425

11.7.2 3D Computed Tomography

427

11.7.3 3D Magnetic Resonance Imaging

428

11.8 Computational Simulations of the Native Valves

428

11.8.1 Aortic Valve

428

11.8.2 Mitral Valve

429

11.9 Biological Valve Prostheses

431

11.9.1 Quasi-Static and Dynamic FE Analyses

432

11.9.2 Fluid--Structure Interaction Analysis

434

11.10 Need for Multiscale Simulations

437

11.11 Summary

437

References

438

12 Mechanical Valve Fluid Dynamics and Thrombus Initiation

446

12.1 Background

447

12.1.1 Heart Valve Disease

447

12.1.2 Artificial Heart Valves

447

12.1.2.1 Mechanical Heart Valves

448

12.1.2.2 Bioprosthetic Heart Valves

449

12.1.3 Design and Performance Issues

449

12.1.4 Computational Fluid Dynamics

451

12.1.5 Experimental Fluid Dynamics

452

12.2 FluidStructure Interaction

454

12.2.1 The Need for Fluid--Structure Interaction

454

12.2.1.1 Monolithic vs. Partitioned Methods and Loose vs. Strong Coupling

455

12.2.1.2 Moving Grid Methods

456

12.2.1.3 Fixed Grid Methods

458

12.3 Modeling Damage to Blood Cells

460

12.3.1 Thrombus Formation and Hemolysis

460

12.3.2 Modeling Blood Damage

461

12.3.3 Implementation of Blood Damage Models in CFD

463

12.4 Concluding Remarks

465

References

467

Subject Index

472