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Preface

The history of technology development is epitomized in Moore’s law. Industrial
deep-submicron and laboratorial nanometer process technologies have already been
fabricating electronic and optical components containing only a few active electrons,
and the geometrical sizes of these components are comparable with the character-
istic wavelength of the electrons. However, the advanced multimedia infrastructure
and service in the future demand further developments in the chip’s capability.

Photonic integrated circuits (PICs) are currently orders of magnitude larger in
physical dimensions than their microelectronic counterparts. Field-effect-type tran-
sistors have reached lengths on the order of 50 nm, while in contrast, passive optical
devices, also those based on photonic crystals, have sizes on the order of one pho-
ton wavelength. The sizes of active devices are even larger, essentially depending
on the matrix element of the interaction. In order to pursue the steady increase in
integration density in photonics such that it rivals the microelectronic footprint size,
nanostructure-based high index of refraction and metallic behavior (negative ep-
silon) are two mostly studied fundamental issues to shrink optical component sizes
and to tackle the sub-wavelength limit.

Nanotechnology has been named as one of the most important areas of forthcom-
ing technology because they promise to form the basis of future generations of elec-
tronic and optoelectronic devices. From the point view of technical physics, all these
developments greatly reduce the geometric sizes of devices, and thus the number of
active electrons in the system. Quantum mechanical considerations about electronic
states, electron transports and various scattering processes including light-matter in-
teraction, are thus crucial. However, the theoretical study is extremely difficult. My
first numerical simulation work about a three-dimensional energy band structure
calculation in 1995 took more than 6 months to complete for one bias-configuration
of a nanoscale metal-oxide-semiconductor field-effect transistor (MOSFET). With
today’s computation workstations the CPU time is reduced to be less than 24 hours.

In general, today’s experimental and theoretical works are very much separated.
The laboratory works are still largely based on try-and-error, while the theoretical
models are over simplified as compared with the complexity of real devices. Ideally
to be cost effective, experimental and theoretical works are to be coordinated in
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vi Preface

such a complementary way that we try to analyze and understand the experimental
results, then use the understanding to guide further experimental works, which in
their turn serve as the feedback to modify and improve the theoretical model. By
this, we expect an optimized device and a valid as well as effective theoretical device
model.

The main purpose of the book is to discuss electrons and photons in and through
nanostructures by the first-principles quantum mechanical theories and fundamen-
tal concepts (a unified coverage of nanostructured electronic and optical compo-
nents) behind nano-electronics and optoelectronics, the material basis, physical phe-
nomena, device physics, as well as designs and applications. The combination of
viewpoints presented within the book can help to foster further research and cross-
disciplinary interaction needed to surmount the barriers facing future generations of
technology design.

Many specific technologies are presented, including quantum electronic devices,
resonant tunneling devices, single electron devices, heterostructure bipolar transis-
tors (HBTs) and high electron mobility transistors (HEMTs), detectors, and infrared
sensors, lasers, optical modulators. It contains essential and detailed information
about the state-of-the-art theories, methodologies, the way of working and real case
studies, helping students and researchers to appreciate the current status and future
potential of nanotechnology as applied to the electronics and optoelectronics indus-
try.

In nanophotonics we will concentrate on local electromagnetic interactions be-
tween nanometric objects and optical fields (non-linear optics in nano- and mi-
crostructured photonic crystals) at the level of systems of nanostructures, into larger
density on interfaces, which in turn leads to intriguing collective effects, such as
plasmonics or multiple reflection and refraction phenomena.

The major task here is that the system at working condition is no longer static.
Rather, it can only properly be described by including dynamic Maxwell and time-
dependent Schrödinger equations. Furthermore, because the numbers of atoms and
electrons in the real devices are huge, while the quantum mechanical Monte Carlo
simulation requires too much computer memory and computer time, we will intro-
duce top-down and bottom-up numerical ways that fundamentally we emphasize
the quantum mechanical Monte Carlo simulation, while at the same time, we apply
the large-system (cluster) tight-binding numerical method to study the device per-
formance property (where the input parameters in the tight-binding method come
from the study of bridging nano to micro scales).

Finally we will examine the processing—structure relationship. The state of
nanostructures during the period that one monolayer exists—before being buried
in the next layer—determines the ultimate structure of the nanostructure, and thus
its properties. This part of the book takes into consideration the following poten-
tial influencing factors in solid-state growth techniques such as metalorganic vapour
phase epitaxy (MOVPE): crystal defects, void structure, grain structure, interface
structure in epitaxial films, reaction-induced structure, strain-induced self-formed
quantum dot structures, through the use of MOVPE to produce quantum structured
semiconductors.
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This book provides a solid foundation for the understanding, design, and sim-
ulation of nano-electronic and optoelectronics devices. It will be of interest to re-
searchers and specialists in the field of solid state technology, electronics and opto-
electronics. It can also serve as a textbook for graduate students and new entrants
in the exciting field. This book takes the reader from the introductory stage to the
advanced level of the construction, principles of operation, and application of these
devices, and puts readers immediately in a position to take their first steps in the
field of computational nano-engineering and design. Results and conclusions of de-
tailed nano-engineering studies are presented in an instructive style. Numerous ref-
erences, illustrations, basic computation subroutines provide further support in this
fast-emerging field. This book is designed as a self-contained introduction to both
the understanding and solution of theoretical and practical design problems in nano
devices.

Ying FuStockholm, Sweden
May 2013
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Chapter 1
Semiconductor Materials

Abstract In this chapter we present a brief introduction and description of elec-
trons in semiconductor materials of which devices are made. The chapter starts with
the basic electronic energy band structure of a single atom, the modifications of the
energy band structure when more atoms are brought together to form bulk materi-
als, i.e., solid states, which is the basis for understanding the electronic and optical
properties of semiconductor materials. We then focus on the theoretical descrip-
tions of electron states at the conduction and valence bandedges of both bulk and
heterostructure materials. Key contents: Bloch theorem and Schrödinger equation
for the envelope function of electrons in solids.

Semiconductors are materials that have moderately good conductivity, which is
higher than that of insulators and lower than that of metals. The conductivity of suf-
ficiently pure semiconductors decays by orders of magnitude when they are cooled
down from room temperature to liquid helium temperature (at absolute zero tem-
perature, the conductivity almost vanishes). A semiconductor in a very pure state
resembles an insulator, whereas in a highly polluted state it acts like a metal. Fur-
thermore, irradiation with light can transform the semiconductor from insulator-like
behavior to metal-like behavior. The optical absorption spectra of semiconductors
normally exhibit a threshold. Below the threshold frequency, light can pass through
with practically no losses, whereas above it the light is strongly absorbed.

All these macroscopic properties of a semiconductor can be traced back to a
common microscopic origin: its energy band structure and the electron distribu-
tion in the energy bands. The energy band structure of a semiconductor consists of
energy bands separated by bandgaps. At absolute zero temperature, a pure semicon-
ductor is characterized by having only completely occupied and completely empty
energy bands. It is this common microscopic feature that underlies the totality of
macroscopic material properties that uniquely define a semiconductor.

The first reference to a characteristic semiconductor property dates back to Fara-
day, who in 1833 observed an increase of the electric conductivity of silver sulfide
with increasing temperature. The term “semiconductor” was introduced in 1911 by
Königsberg and Weiss subsequent to a similar term used in a similar context em-
ployed by Ebert in 1789 and Bromme in 1851.

Y. Fu, Physical Models of Semiconductor Quantum Devices,
DOI 10.1007/978-94-007-7174-1_1,
© Springer Science+Business Media Dordrecht 2014
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2 1 Semiconductor Materials

In 1874, Braun discovered that contacts between certain metal sulfides and metal
tips exhibited different electrical resistance upon reversal of the polarity of the ap-
plied voltage. Such point contact structures were used as rectifiers in radio receivers
at the beginning of the 20th century. Similar rectifying action was also found for
selenium and copper oxide. Copper oxide was used in 1926 by Grondahle as a rec-
tifier, followed by rectifiers using selenium. The first practical application of copper
oxide in photocells was accomplished in 1932 by Lang.

The decisive events for the entire future development of semiconductor physics
were the invention of the germanium-based bipolar transistor in 1949 and realization
of the field-effect transistor, with the help of silicon at the end of the 1950s. With
the introduction of silicon, the development of semiconductor microelectronics be-
gan. Later, a similar role was played by compounds involving elements of III–V
groups in the periodic table, such as GaAs for the development of semiconductor
optoelectronics.

Today’s advanced information technology is mainly attributed to the electronic
representation and processing of information in a low-cost, high-speed, very com-
pact, and highly reliable fashion. The quest for and accomplishment of continual
miniaturization and integration of solid-state electronics have been the key to the
success of the computer industry and computer applications.

As the number of transistors integrated in a circuit continues to increase, dis-
crete device dimensions have begun to reach the nanometer regime. Such a down-
scaling progress of individual device components has been tremendous over the
last 30 years: a 1.0-µm gate length metal-oxide-semiconductor field-effect transis-
tor (MOSFET) was reported in 1974 by Dennard et al. [1]; 0.1-µm gate length by
Sai-Halasz et al. [2] in 1987, 70-nm gate length by Hashimoto et al. [3] in 1992,
40-nm gate length by Ono et al. [4] in 1995, 30-nm gate length in 1998 by Kawaura
et al. [5]. Vertical p-MOS transistors also have been extensively investigated, and
transistors with channel lengths of 130 and 100 nm based on Si as well as GaAs
have been fabricated [6–11].

However, the advanced multimedia infrastructure and service in the future de-
mand further reduction in the chip size. Chip density, represented by memory tech-
nology, has followed Moore’s law and roughly doubled every other year. The trend
remains strong and definite. For example, a 0.15-µm process technology was imple-
mented in the first 4-Gb dynamic random access memory (DRAM) in 1997 and the
feature size of DRAM transistors is projected to be 0.18 µm (1 Gb) in 2001, 0.13 µm
(4 Gb) in 2004, 0.10 µm (16 Gb) in 2007, and 0.07 µm (64 Gb) in 2010 [12, 13].

When the size of a system becomes comparable to the electron wavelength, quan-
tum effects become dominant [14]. This occurs when transistors are down-scaled
and their characteristic dimensions reach the nanometer regime, leading to various
new phenomena, for example, electron interference [15], additive parallel conduc-
tance in the absence of magnetic field [16–18], conductance oscillation [19, 20]
and abrupt period changes of conductance oscillation with applied magnetic field
[21, 22], as well as novel electronic and optoelectronic devices such as resonant
tunneling diodes [23, 24] and quantum well infrared photodetectors [25, 26], based
on quantum mechanisms.
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For nanoelectronics to become a reality, it is essential that new devices and cir-
cuits be fabricated with nanometer precision, and that devices and circuits can be
to designed accurately. Nanofabrication technology [27, 28] has made impressive
advances by producing artificial semiconductor structures using molecular-beam
epitaxy (MBE), metal-organic chemical vapor deposition (MOCVD), and chemical-
beam epitaxy. Accurately controlled feature sizes as small as monolayers of atoms in
the growth direction for dissimilar semiconductor materials, or heterostructure sys-
tems, have been achieved. Nanoscale lithography and patterning by electron-beam
lithography have also been highly developed in the direction perpendicular to the
growth direction. Soft lithography [29] can be used to make devices smaller than
100 nm and can pattern curved surfaces and functional materials other than pho-
toresists. It can also fabricate three-dimensional structures and chemically modify
surfaces.

The advances in nanofabrication technology have brought quantum effect device
concepts to reality and have presented a great challenge for device physicists in the
theoretical analysis of nanoelectronic devices [30–32]. In this chapter, we present
quantum mechanical descriptions about electron states in both bulk and heterostruc-
ture semiconductor materials.

1.1 Atoms and Solids

In 1913 Niels Bohr presented a model of the hydrogen atom, which has one electron.
Bohr stated two postulates.

1. The electron moves only in certain circular orbits, called stationary states.
Figure 1.1 shows an electron of mass m0 and charge −e, moving at speed v in

a stable circular orbit of radius r , around a nucleus of charge +e. The centripetal
force is provided by the Coulombic attraction

− e2

4πε0r2

between the electron and the nucleus, where ε0 is the permittivity of free space.
From Newton’s second law we have

m0v
2

r
= e2

4πε0r2
(1.1)

and then the total energy of the electron is

E = 1

2
mv2 − e2

4πε0r
= − e2

8πε0r
(1.2)

2. Radiation occurs only when the electron goes from one allowed orbit to an-
other of lower energy. The energy of the radiation is �ω =Em −En, where Em and
En are the energies of two allowed electron orbits.
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Fig. 1.1 Bohr model of the
hydrogen atom. The
negatively charged electron
e− is in a circular orbit of
radius r around the
positively-charged proton p+

To restrict the allowed values of the orbital radius, we need the “third” postulate:
3. The angular momentum of the electron is restricted to integer n multiples of �:

m0vr = n� (1.3)

When v = n�/m0r from the above equation is equated to

v =
√

e2

4πε0m0r

of Eq. (1.1), we find the radius of the nth orbit is

rn = 4πε0�
2n2

m0e2
= n2a0 (1.4)

where

a0 = 4πε0�
2

m0e2
= 0.529 Å (1.5)

is the Bohr radius. The energy of the nth orbit is

En = − m0e
4

32π2ε2
0�

2n2
= −Ry

n2
(1.6)

where

Ry = m0e
4

32π2ε2
0�

2
= �

2

2m0a
2
0

= 13.6 eV

is the Rydberg constant.
Bohr’s theory may be applied to other single electron systems such as He+ or

Li++, provided the nuclear charge is replaced by Ze, where Z is the atomic number.
And the energy of the nth state is

En = −RyZ
2

n2
(1.7)

The energy state diagram for hydrogen (Z = 1) is shown in Fig. 1.2. Each state
is characterized by the integer n, which is called the principal quantum number.
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Fig. 1.2 The energy state
diagram of the hydrogen
atom. Light is emitted or
absorbed when an electron
makes a transition between
two states

When the atom is unexcited, the electron is in the ground state with n = 1. The
electron may be raised to a higher level, normally referred to as an excited state, by
a collision with another electron or by absorbing a photon. Note that at steady state,
the photon energy must correspond exactly to the energy difference between the two
states involved in the transition. The electron may return from an excited state to the
ground state in one step or via intermediate levels. A photon with a single frequency
is emitted in the first case, there are two or more frequencies in the second case.
Lyman’s series corresponds to transitions from higher levels to n= 1, transitions to
level n= 2 form the Balmer series; those to n= 3 form the Paschen series.

The hydrogen atom is described rigorously by the Schrödinger equation in its
time-independent form

(
−�

2∇2

2m0
− Ze2

4πε0r

)
Ψ (r)=EΨ (r) (1.8)

Because of the spherical symmetry of the potential energy, the wave function can be
expressed as

Ψn�m(r, θ,φ)=Rn�(r)Y�m(θ,φ) (1.9)

in spherical polar coordinate. Y�m(θ,φ) are the angular momentum eigen functions.
The first few normalized spherical harmonics Y�m(θ,φ) (m = −�,−�+ 1, . . . , �−
1, �) are

Y00 = 1√
4π

Y11 = −
√

3

8π
sin θeiφ
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Y10 =
√

3

4π
cos θ

Y22 =
√

15

32π
sin2 θei2φ

Y21 = −
√

15

8π
sin θ cos θeiφ

(1.10)

Y20 =
√

5

16π

(
3 cos2 θ − 1

)

Y33 = −
√

35

64π
sin3 θe3iφ

Y32 =
√

105

32π
sin2 θ cos θe2iφ

Y31 = −
√

21

64π
sin θ

(
5 cos2 θ − 1

)
eiφ

Y30 =
√

7

16π

(
5 cos3 θ − 3 cos θ

)
The radial Schrödinger equation is

d2Rn�(r)

dr2
+ 2

r

dRn�(r)

dr
− �(�+ 1)

r2
Rn�(r)+ 2m0

�2

(
En − Ze2

4πε0r

)
Rn�(r)= 0

(1.11)
By introducing the Bohr radius a0, see Eq. (1.5), the first few normalized radial
wave functions are

R10(r)= 2

(
Z

a0

)3/2

e−Zr/a0

R20(r)= 1√
2

(
Z

a0

)3/2(
1 − Zr

2a0

)
e−Zr/2a0

R21(r)= 1

2
√

6

(
Z

a0

)3/2
Zr

a0
e−Zr/2a0

(1.12)

R30(r)= 2

3
√

3

(
Z

a0

)3/2(
1 − 2Zr

3a0
+ 2Z2r2

27a2
0

)
e−Zr/3a0

R31(r)= 8

27
√

6

(
Z

a0

)3/2(
1 − Zr

6a0

)
Zr

a0
e−Zr/3a0

R32(r)= 4

81
√

30

(
Z

a0

)3/2
Z2r2

a2
0

e−Zr/3a0
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Table 1.1 Shell structure of
atomic states of electrons n Shell � Subshell

1 K 0 s (sharp)

2 L 1 p (principal)

3 M 2 d (diffuse)

4 N 3 f (fundamental)

5 O 4 g

6 P 5 h

· · · ·

The energy of each state depends only on the principal quantum number n, which
varies from 1 to ∞, as shown by Eq. (1.7). The magnitude of the orbital angular
momentum, L, of a state is determined by the orbit quantum number �,

L= √
�(�+ 1)� (1.13)

where the maximum value of � is restricted by the value of n: � = 0,1,2, . . . , (n−
1). In order to specify the direction of the angular momentum vector, we need to set
up a preferred axis, say, the z axis. The component of the orbit angular momentum
along this axis is also quantized

Lz =m� (1.14)

where the values of the orbital magnetic quantum number m, are restricted to m =
0,±1,±2, . . . ,±�.

All states with a given value of n are said to form a shell. All these states are
referred as degenerate since they have the same energy value. And it is easy to
see that the degeneracy of these states is n2. States with a given value of � form
a subshell. The designations are listed in Table 1.1. The first four letters for the
subshells are historical (sharp, principal, diffuse, and fundamental).

In addition, the electron has an intrinsic property called spin that manifests itself
according to the following rules. The magnitude of the spin angular momentum, S,
of the electron is determined by its spin quantum number, s = 1/2:

S = √
s(s + 1)�=

√
3

2
� (1.15)

In a magnetic field, the z component of the spin can assume only two values

Sz =ms� (1.16)

where the spin magnetic quantum number, ms = ±1/2. The introduction of spin
doubles the number of states allowed for each value of n.

Now, four quantum numbers, n, �, m�, and ms may be used to classify the states
of electrons in all atoms, although the energy associated with a given set of values
depends on the atom. The question naturally arises as to why all electrons in an
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Fig. 1.3 A simple, but
approximate, mnemonic for
the filling of sublevels

Fig. 1.4 (a) As two atoms
are brought closer together,
a single atomic level splits
into two states with different
energies. (b) A single atomic
level splits into five when five
atoms are in close proximity.
(c) In a crystal each atomic
level splits into an essentially
continuous band of energies

atom do not fall to the ground state. A study of the classification of spectral lines
led W. Pauli in 1925 to make an important statement, now called the Pauli exclusion
principle:

No two electrons in an atom can have the same four quantum numbers n, �, m�,
and ms .

With the aid of the exclusion principle one can see how electrons fill shells (n)
and subshells (�). For each value of � there are (2� + 1) values of m� and each
subshell can accommodate 2(2�+ 1). A simple useful, but approximate, mnemonic
that tells us the order in which the subshells are first filled is shown in Fig. 1.3.

The ground-state electron configurations are indicated in the periodic table by
the number of electrons in a subshell as a superscript. For example, 2p3 means that
there are three electrons in subshell �= 1.

In isolated atoms the energy levels are sharply defined. Now suppose that two
atoms are brought close to each other so that their electron wave functions overlap.
As a result of the interaction between the electrons, it turns out that each single state
of the isolated atom splits into two states with different energies. As Fig. 1.4 shows,
the degree of splitting increases as the interatomic separation decreases. Similarly,
if five atoms are placed in close proximity, each original energy level splits into
five new levels. The same process occurs in a solid, where there are roughly 1028
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Table 1.2 Electron configurations of typical elements making up common semiconductors

Group IV

Core electrons Valence electrons

C 1s2 2s22p2

Si 1s22s22p6 3s23p2

Ge 1s22s22p63s23p63d10 4s24p2

Group III Group V

Core electrons Valence electrons Core electrons Valence electrons

N 1s2 2s22p3

Al 1s22s22p6 3s23p1 P 1s22s22p6 3s23p3

Ga 1s22s22p63s23p63d10 4s24p1 As 1s22s22p63s2sp63d10 4s24p3

In [Kr] 4d10 5s25p1 Sb [Kr] 4d10 5s25p3

Group II Group VI

Core electrons Valence electrons Core electrons Valence electrons

O 1s2 2s22p4

S 1s22s22p6 3s23p4

Zn 1s22s22p63s23p63d10 4s2 Se 1s22s22p63s23p63d10 4s24p4

Cd [Kr] 4d10 5s2 Te [Kr] 4d10 5s25p4

Hg [Xe] 4f 145d10 6s2

atoms/m3: The energy levels associated with each state of the isolated atom spread
into essentially continuous energy bands separated from each other by energy gaps.

Before further examining the various properties of semiconductors it is extremely
useful to examine the electron configurations of some of the elements which make
up the various semiconductors as listed in Table 1.2.

A very important conclusion can be drawn about the elements making up the
semiconductors: The outmost valence electrons are made up of electrons in either
the s- or p-type orbitals. While this conclusion is strictly true for elements in the
atomic form, it turns out that even in the crystalline semiconductors the electrons
in the valence and conduction bands retain this s- or p-type character. The core
electrons are usually not of interest, except of some special characterization-type
experiments.

Here we have assumed that solids are composed of ion cores, i.e., nuclei, and
those core electrons so strongly bound as to be negligibly perturbed from their
atomic configuration by their environment in the solid, and valence electrons, i.e.,
those electrons whose configuration in the solid may differ significantly from that
in the isolated atom. However, it is to be remembered that the distinction between
core and valence electrons in Table 1.2 is one of convenience. For example, the en-
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Fig. 1.5 (a) Si atom interacts with four neighboring Si atoms positioned at the vertices of (b) a reg-
ular tetrahedron by sharing its four valence electrons (3s23p2) with the four neighboring Si atoms

ergy of 3d states is lower than 4p according to Fig. 1.3 so that, instead of being
core electrons in Table 1.2, electrons at 3d10 in Ge should be categorized as valence
electrons. This is one of major reasons that the energy band structure of Ge is much
more complicated than Si.

In general it is found that when atoms exchange or share valence electrons so
that the complement of quantum states is completed, they have a lower electrostatic
energy for their combined electron patterns than when they are separate. For exam-
ple, Si has four valence electrons grouped in two closely spaced energy levels (3s
and 3p, see Table 1.2), they can combine with themselves by sharing four valence
electrons with four surrounding Si atoms in an endless array. The four nearest neigh-
boring Si atoms around any one Si atom are positioned at the vertices of a regular
tetrahedron, forming four tetrahedral bonds with the central atom, see Fig. 1.5. This
creates the diamond crystal structure.

The intrinsic property of a crystal is that the environment around a given atom
or a group of atoms is exactly the same as the environment around another atom
or a similar group of atoms. To understand and to define the crystal structure, two
important concepts are introduced, i.e., the Bravais lattice and the basis.

The Bravais lattice represents a set of points in the space which form a periodic
structure. Each point sees exactly the same environment. A building block of atoms,
called the basis, is then attached to each lattice point, yielding a crystal structure.

An important property of a Bravais lattice is the ability to define three vectors,
a1, a2, and a3, such that any lattice point R′ can be obtained from any other lattice
point R by a translation

R′ = R +m1a1 +m2a2 +m3a3 (1.17)

where m1, m2, and m3 range through all integral values (negative, zero, as well
as positive). The translation vectors, a1, a2, and a3 are called primitive vectors that
generate the Bravais lattice (which will be simply referred to as the lattice, or crystal
lattice).

There are 14 types of lattices in the three dimensional space. We shall focus on
the cubic lattice which is the structure taken by commonly used semiconductors.
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Fig. 1.6 (a) Simple cubic, (b) body-centered cubic, and (c) face-centered cubic lattices. a is the
lattice constant

There are three kinds of cubic lattices: simple cubic, body-centered cubic and face-
centered cubic, see Fig. 1.6. The simple cubic lattice, see Fig. 1.6(a), is generated
by the primitive vectors of

a1 = ax0, a2 = ay0, a3 = az0 (1.18)

where x0, y0, and z0 are the three unit vectors of a normal rectangular Cartesian
coordinate, a is the lattice constant.

The body-centered cubic (bcc) lattice is formed by adding to the simple cubic
lattice an additional lattice point at the center of the simple cube, see Fig. 1.6(b).
A symmetric set of primitive vectors for the bcc lattice is

a1 = a

2
(y0 + z0 − x0), a2 = a

2
(z0 + x0 − y0), a3 = a

2
(x0 + y0 − z0)

(1.19)
The face-centered cubic lattice (fcc), see Fig. 1.6(c): To construct the fcc lattice

we add to the simple cubic lattice an additional lattice point in the center of each
square face. The fcc lattice is of great importance, since an enormous variety of
solids crystallize in this form with an atom (or ion) at each lattice site. A symmetric
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Fig. 1.7 Face-centered cubic lattice with two-atom basis forming either the so-called diamond
(when the two atoms are identical) or the zincblende (when the two atoms in the basis are different)
structure

set of primitive vectors for the fcc lattice is

a1 = a

2
(y0 + z0), a2 = a

2
(z0 + x0), a3 = a

2
(x0 + y0) (1.20)

Essentially all semiconductors of interest for electronics and optoelectronics have
the fcc structure. However, they have two atoms per basis. The coordinates of the
two basis atoms are (000) (the grey atom) and (a/4)(111) (white), indicated in
Fig. 1.7 by two tilted arrows. If the two atoms of the basis are identical, the structure
is called the diamond structure. Semiconductors such as silicon, germanium and
carbon (also refer to Fig. 1.5) fall into this category. If the two atoms are different,
for example, GaAs, AlAs, CdS, the structure is called zincblende. The structure can
be viewed as a stack, left side of Fig. 1.7, of four regular tetrahedrons shown in
Fig. 1.5.

Semiconductors with the diamond structure are often called elemental semicon-
ductors, while the zincblende semiconductors are usually called compound semi-
conductors. The compound semiconductors are also denoted by the positions of the
atoms in the periodic table, for example, GaAs, AlAs and InP are called III–V semi-
conductors while CdS, CdSe and CdTe are called II–VI semiconductors.

Many of the properties of crystals and many of the theoretical techniques used to
describe crystals derive from the periodicity of crystalline structures. This suggests
the use of Fourier analysis as an analytical tool. In the analysis of periodic time
varying fields (for example, the acoustic signal analysis and radio signal analysis)
we often do much of the analytical work in the frequency domain rather than in the
time domain. In analogy with the time-frequency duality, there is a corresponding
real space-reciprocal space or wave vector space duality for crystal-related discus-
sions. Many concepts are best understood in terms of functions of the wave vector.
We describe a plane wave with wavelength λ equivalently as a plane wave with
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wave vector k of magnitude 2π/λ and propagation direction perpendicular to the
wave front. The space of the wave vectors is called the reciprocal space, the ana-
logue of the frequency domain for the time problem.

A simple transformation is carried out to map the real space lattice into the re-
ciprocal space (k-space)

b1 = 2π
a2 × a3

a1 · a2 × a3
, b2 = 2π

a3 × a1

a1 · a2 × a3
, b3 = 2π

a1 × a2

a1 · a2 × a3

(1.21)

by which it is easy to find that the simple cubic Bravais lattice, with cubic primi-
tive cell of lattice constant a, and primitive vectors Eq. (1.18), has a simple cubic
reciprocal lattice

a1 = ax0, a2 = ay0, a3 = az0 (1.22)

has a simple cubic reciprocal lattice with cubic primitive cell of side 2π/a, and
primitive vectors

b1 = 2π

a
x0, b2 = 2π

a
y0, b3 = 2π

a
z0 (1.23)

Similarly, the primitive vectors of the reciprocal lattice of the fcc Bravais lattice with
primitive vectors Eq. (1.20) are

b1 = 2π

a
(y0 + z0 −x0), b2 = 2π

a
(z0 +x0 −y0), b3 = 2π

a
(x0 +y0 − z0)

(1.24)
A general vector

G =m′
1b1 +m′

2b2 +m′
3b3 (1.25)

is called a reciprocal lattice vector, where the m′
1, m′

2 and m′
3 are three integers

(either positive or negative).
It is easy to see that by Eq. (1.21),

bi · aj = 2πδij (1.26)

which resulting in the following special relationship

eiG·R = ei2π(m
′
1m1+m′

2m2+m′
3m3) = 1 (1.27)

where R is a lattice vector in Eq. (1.17) which is often called the direct lattice vector
to distinguish it from the reciprocal lattice vector G.

Because of the above relationship, two wave vectors k and k′ satisfying

k′ = k + G (1.28)
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Fig. 1.8 First Brillouin zones for simple cubic lattice (left) and fcc (right) lattice. Points and lines
of symmetry are indicated

are said to be equivalent. This implies that we only need to focus on those k points
that lie within or on the so-called Brillouin zone, which has the property that no
two interior k points are equivalent. From here and throughout, we consider only
the first Brillouin zone which is the region in the reciprocal space that is closer to
the center of the reciprocal space than to any other reciprocal lattice point. The first
Brillouin zones for the simple cubic and fcc lattices are shown in Fig. 1.8.

Most importantly we consider XR-R�-�X-XM in the k-space (in unit of 2π/a)
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)
(1.29)

for the simple cubic lattice. For the fcc lattice, such as the diamond as well as
zincblende structures (fcc lattices with bases), we mostly consider XU-UL-L�-�X-
XW-WK in the k-space (in unit of 2π/a),

� = (0,0,0), X = (1,0,0), L =
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)
(1.30)

1.2 Bulk and Epitaxial Crystal Growth

So far we have discussed crystal structures that are present in natural semiconduc-
tors. These structures are the lowest free energy configuration of the solid state of
the atoms. Since the electrical and optical properties of the semiconductors are com-
pletely determined by the crystal structures, artificial structures, e.g., hetero mate-
rials (among them the well-known superlattices have been fabricating ever since
mid-1970s inspired by the pioneering work of Esaki and Tsu at IBM) grown by
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Fig. 1.9 Schematic of
Czochralski-style crystal
grower used to produce
substrate ingots. The
approach is widely used for
Si, GaAs and InP

heteroepitaxial crystal growth techniques such as molecular beam epitaxy (MBE)
and metal-organic chemical vapor deposition (MOCVD) have made a tremendous
impact on the semiconductor physics, the semiconductor technology and the semi-
conductor electronic and optoelectronic device industry.

Bulk crystal growth techniques are used mainly to produce substrates on which
devices are eventually fabricated. While for some semiconductors like silicon and
GaAs (to some extent for InP) the bulk crystal growth techniques are highly ma-
tured; for most other semiconductors it is difficult to obtain high quality, large area
substrate. The aim of the bulk crystal growth techniques is to produce single crys-
tal boules with as large a diameter as possible and with as few defects as possible.
For silicon the boule diameters have reached 30 cm with boule lengths approaching
100 cm. Large size substrates ensure low cost device production.

Any material that will crystallize can be crystallized by slow cooling from a
molten mass, or by cooling a supersaturated solution of the material. The classic
home experiment is that of cooling a supersaturated solution of copper sulphate in
water; crystal platelets will readily form as the liquor cools. A much larger crystal
can be grown if a seed crystal of copper sulphate is suspended in the solution as
it cools, the growth is then onto the seed crystal. One important technique is the
Czochralski (CZ) technique. In the CZ technique shown in Fig. 1.9, the melt of the
charge (i.e., the high quality polycrystalline material) is held in a vertical crucible.
The top surface of the melt is just barely above the melting temperature. A seed
crystal is then lowered into the melt and slowly withdrawn. As the heat from the melt
flows up the seed, the melt surface cools and the crystal begins to grow. The seed is
rotated about its axis to produce a roughly circular cross-section crystal. The rotation
inhibits the natural tendency of the crystal to grow along certain orientations to
produce a faceted crystal. The resulting crystal is called a boule and may be several
centimeters in diameter and a good fraction of a meter in length. Some materials, for
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example GaAs, must be used very carefully. Arsenic is likely to boil off the melt,
which has to be kept under pressure of an inert gas to prevent this; one may also
have a layer of suitable molten glass over the melt as a further protection. Material
grown by this process is referred to as bulk grown.

The CZ technique is widely employed for silicon, GaAs, and InP and produces
long ingots (boules) with very good circular cross-sections. For silicon up to 100
kg ingots can be obtained. In the case of GaAs and InP the CZ technique has to
face problems arising from the very high pressures of As and P at the melting tem-
peratures of the compounds. Not only does the chamber have to withstand such
pressures, also the As and P leave the melt and condense on the side walls. To avoid
the second problem one can seal the melt by covering it with a molten layer of a
second material (e.g., boron oxide) which floats on the surface. The technique is
then referred as liquid encapsulated Czochralski, or the LEC technique.

A second bulk crystal growth technique involves a charge of material loaded in a
quartz container. The charge may be composed of either high quality polycrystalline
material or carefully measured quantities of elements which make up a compound
crystal. The container called a “boat” is heated till the charge melts and wets the
seed crystal. The seed is then used to crystallize the melt by slowly lowering the
boat temperature starting from the seed end. In the gradient-freeze approach the
boat is pushed into a furnace (to melt the charge) and slowly pulled out. In the
Bridgement approach, the boat is kept stationary while the furnace temperature is
temporally varied to form the crystal.

The easiest approach for the boat technique is to use a horizontal boat. However,
the shape of the boule that is produced has a D-shaped form. To produce circular
cross-sections vertical configurations have now been developed for GaAs and InP.

In addition to produce high-purity bulk crystals, the techniques discussed above
are also responsible for producing crystals with specified electrical properties. This
may involve high-resistivity materials along with n- or p-type materials. In silicon
it is difficult to produce high resistivity substrate by bulk crystal growth and resis-
tivities are usually less than 104 � · cm. However, in compound semiconductors
carrier trapping impurities such as chromium and iron can be used to produce ma-
terials with resistivities of about 108 � · cm. The high resistivity or semi-insulating
substrates are extremely useful in device isolation and for high-speed devices. For
n- or p-type dopings carefully measured dopants are added in the melt.

The availability of high quality substrates is essential to any device technology.
Other than the three materials of Si, GaAs, and InP, the substrate fabrication of
semiconductors is still in its infancy. Since epitaxial growth techniques used for
devices require close lattice matching between the substrate and the overlayer, non-
availability of substrates can seriously hinder the progress of a material technology.
This is, for example, one of the reasons of slow progress in large bandgap semicon-
ductor technology necessary for high-power and high-temperature electronic de-
vices and short-wavelength semiconductor lasers.

The epitaxial growth techniques have a very slow growth rate (as low as a mono-
layer per second for some techniques) which allow one to control very accurately
the dimensions in the growth direction. In fact, in techniques like molecular beam
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Fig. 1.10 Principle of the MBE growth system. In situ monitoring capabilities are often standard
components of the system

epitaxy and metal organic chemical vapor deposition, one can achieve monolayer
(about 3 Å) control in the growth direction. This level of control is essential for the
variety of heterostructure devices that have been beginning to be used in electronics
and optoelectronics. The epitaxial techniques are also very useful for precise doping
profiles that can be achieved.

Molecular beam epitaxy (MBE) is one of the most important epitaxial techniques
as far as heterostructure physics and devices are concerned. MBE is a high vac-
uum technique (about 10−11 torr vacuum when fully pumped down) in which cru-
cibles containing a variety of elemental charges are placed in the growth chamber
(Fig. 1.10). The elements contained in the crucibles make up the components of the
crystal to be grown as well as the dopants that may be used. When a crucible is
heated, atoms or molecules of the charge are evaporated and these travel in straight
lines to impinge on a heated substrate.

The growth rate in MBE is about 0.1 monolayer per second and this slow rate
coupled with shutters placed in front of the crucibles allow one to switch the compo-
sition of the growing crystal with monolayer control. However, to do so, the growth
conditions have to be adjusted so that growth occurs in the monolayer by mono-
layer mode rather than by three dimensional island formation. This requires that
atoms impinging on the substrate have enough kinetics to reach an atomically flat
profile. Thus the substrate temperature has to be maintained at a point where it is
high enough to provide enough surface migration to the incorporating atoms, but
not so high as to cause entropy controlled defects.

Since MBE allows one to grow crystal structures with atomic control, one can
change the periodicity of the crystals. This leads to the concept of superlattices
where two (or even more) semiconductors A and B are grown alternately with thick-
ness dA and dB respectively along the growth direction. The periodicity of the su-
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Fig. 1.11 Schematic diagram
illustrating the MBE growth
of an AlGaAs/GaAs
superlattice sample.
Deposition of (a) (Al, Ga)As,
(b) GaAs

perlattice in the growth direction is then dA + dB . An AlGaAs/GaAs superlattice
grown by MBE is illustrated in Fig. 1.11.

Because of the different sizes of atoms that compose the semiconductor materi-
als, different semiconductor materials have different lattice constants a. For exam-
ple, aGaAs = 5.65 Å, aAlAs = 5.66 Å, aInAs = 6.06 Å (see more later in Table 1.4).
Superlattices can then be placed in three general categories: (i) lattice matched such
as AlGaAs/GaAs, (ii) lattice strained (InAs/GaAs), and (iii) lattice strained with
intermediate substrate. We shall discuss lattice strain in hetero materials more ex-
tensively later.

Since no chemical reactions occur in MBE, the growth is the simplest of all
epitaxial techniques and is quite controllable. However, since the growth involves
high vacuum, leaks can be a major problem. The growth chamber walls are usually
cooled by liquid N2 to ensure high vacuum and to prevent atoms/molecules to come
off from the chamber walls.

The low background pressure in MBE allows one to use electron beams to mon-
itor the growing crystal. The reflection high-energy electron diffraction (RHEED)
technique relies on electron diffraction to monitor both the quality of the growth
substrate and the layer-by-layer growth mode. As each monolayer gets filled up,
one can see this reflected in the RHEED intensity by the naked eye!

While MBE is a simple and elegant growth technique, it cannot be used con-
veniently for all semiconductors. For example, phosphides are often not grown by
MBE due to the danger in handling elemental phosphorus. Also elements with very
low vapor pressures are difficult to use since it is not easy to heat the crucibles
beyond 1500 K. Silicon epitaxy in MBE, for example, requires an electron-beam
evaporation where an electron beam is used to knock off Si atoms for growth.

In general, MBE is a relatively safe technique and has become the technique of
choice for the testing of almost all new ideas on heterostructure physics.

Metal organic chemical vapor deposition (MOCVD) is another important growth
technique widely used for heteroepitaxy. Like MBE, it is also capable of producing
monolayer-sharp interfaces between semiconductors. Unlike in MBE, the gases that
are used in MOCVD are not made of single elements, but are complex molecules
which contain elements like Ga or As to form the crystal. Thus the growth depends
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upon the chemical reactions occurring at the heated substrate surface. For example,
in the growth of GaAs one often uses Triethyl Gallium and Arsine and the crystal
growth depends upon the following reaction

Ga(CH3)3 + AsH3 � GaAs + 3CH4 (1.31)

One advantage of the growth occurring via a chemical reaction is that one can use
lateral temperature control to carry out local area growth. Laser assisted local area
growth is also possible for some materials and can be used to produce new kinds of
device structures. Such local area growth is difficult in MBE.

There are several varieties of MOCVD reactors. In the atmospheric MOCVD the
growth chamber is essentially at atmospheric pressure. One needs a large amount of
gases for growth in this case, although one does not have the problems associated
with vacuum generation. In the low-pressure MOCVD the growth chamber pressure
is kept low. The growth rate is then slow as in the MBE.

The use of the MOCVD equipment requires very serious safety precautions. The
gases used are highly toxic and a great many safety features have to be incorporated
to avoid any deadly accidents.

In addition to MBE and MOCVD one has hybrid epitaxial techniques often
called MOMBE (metal organic MBE) which try to combine the best of MBE and
MOCVD. In MBE one has to open the chamber to load the charge for the materials
to be grown while this is avoided in MOCVD where gas bottles can be easily re-
placed from outside. Additionally, in MBE one has occasional spiting of material in
which small clumps of atoms are evaporated off on to the substrate. This is avoided
in MOCVD and MOMBE.

1.3 Bloch Theorem of Electrons in Solids

We now study the properties of electrons in solids. We start with the real-space
Schrödinger equation for an electron in a periodic lattice structure

H0(r)Ψ (r)=
[−�

2∇2

2m0
+ V (r)

]
Ψ (r)=EΨ (r) (1.32)

where the first term represents the kinetic energy of the electron and V (r) is the
potential energy of the lattice

V (r + R)= V (r) (1.33)

where R is any lattice vector defined by Eq. (1.17). m0 is the free electron mass.
The Bloch theorem states that the solutions of the Schrödinger equation of

Eq. (1.32) with periodic condition of Eq. (1.33), denoted by quantum numbers n

and k, have the following properties

Ψnk(r)= 1√
N
unk(r)e

ik·r
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unk(r)= unk(r + R) (1.34)∫
cell

u∗
nk(r)unk(r)dr = 1

and E =En(k) is the energy dispersion relationship. Here N is the total number of
unit cells in the crystal. The unit cell is defined by the primitive vectors of the lattice.
n is the energy band index and �k is the quasi-momentum of the electron. The
rigorous derivation of the Bloch theorem can be found in many solid state textbooks,
while a brief understanding can be formulated as follows.

Because of the periodic condition, the physical properties at r are expected to be
identical to the ones at r + R for which we can write∣∣Ψnk(r)

∣∣2 = ∣∣Ψnk(r + R)
∣∣2 (1.35)

Note that the wave function itself is not directly physical from the quantum mechan-
ical point of view, while the amplitude of the wave function represents the spatial
distribution of the electron, thus resulting in the above equation due to the periodic
condition. The above equation can be fulfilled when the wave function is decom-
posed into a part which has the periodicity as the crystal and a phase factor. The
expression for the phase factor in Eq. (1.34), i.e., eik·r , becomes the most natural
choice when we recall Eq. (1.17), i.e., R = m1a1 + m2a2 + m3a3, where m1, m2
and m3 are integers, a1, a2 and a3 are primitive vectors of the lattice.

We now see that the solution of the Schrödinger equation of Eq. (1.32) is to be
characterized by k. Furthermore, there must be many electron states because of the
large numbers of electrons in the crystal for which we introduce a quantum number
n to distinguish them so that the total wave function of an electron state nk in the
crystal is expressed as

Ψnk(r)= Bunk(r)e
ik·r

(1.36)
unk(r)= unk(r + R)

with an eigen value En(k). This is almost identical to the Bloch theorem of
Eq. (1.34) except a parameter B which is to be obtained by normalizing the wave
function ∫

Ω

∣∣Ψnk(r)
∣∣2dr = 1 (1.37)

where Ω denotes the volume of the crystal. Insert Eq. (1.36) into the above equation,∫
Ω

∣∣Ψnk(r)
∣∣2dr = |B|2

∫
Ω

∣∣unk(r)∣∣2dr = 1 (1.38)

Because of the periodicity of the crystal, we only need to focus on the spatial region
in one unit cell in the crystal, say unit cell 1. All other unit cells, denoted as i =
2,3, . . . ,N , in the crystal can be expressed by displacing unit cell 1 by the lattice
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vector Ri −R1, see Eq. (1.17). Here N is the total number of unit cells in the crystal
volume Ω . Thus,

∫
Ω

∣∣Ψnk(r)
∣∣2dr = |B|2

∫
Ω

∣∣unk(r)∣∣2dr = |B|2
N∑
i=1

∫
cell

∣∣unk(r i )∣∣2dr i

= |B|2
N∑
i=1

∫
cell

∣∣unk(r1 + Ri − R1)
∣∣2dr1

= |B|2
N∑
i=1

∫
cell

∣∣unk(r1)
∣∣2dr1 = 1 (1.39)

We have inserted the second equation of Eqs. (1.36) to obtain the fourth equality.
Using the third equation of Eqs. (1.34), i.e., unk(r) is normalized in the unit cell,
we readily obtain B = 1/

√
N , and thus the Bloch theorem of Eqs. (1.34).

There are very important consequences of the Bloch theorem about the proper-
ties of electrons in solids. One of them is the acceleration theorem, which will be
studied in Sect. 2.4. When applying an external force F , e.g., due to an external
electromagnetic field (E,B) on the electrons in the solid,

�k̇ = F = −e(E + vnk × B), vnk = 1

�

∂Enk

∂k
(1.40)

Here −e is the electron charge and vnk is the electron group velocity. �k is therefore
commonly referred to as the quasi-momentum of the electron in the crystal.

Moreover, as a consequences of time reversal symmetry, for a crystal of

HΨnk(r)=En(k)Ψnk(r)

the following relationship exists

En(k)=En(−k) (1.41)

regardless of the spatial symmetry of the system, i.e., the energy of state with a wave
vector k is the same as −k. This is known as Kramers’ theorem [33].

1.4 sp3s∗ Tight-Binding Model

In this and the following sections we introduce two most applied energy band struc-
ture models to calculate Eq. (1.32), namely, tight-binding model and k · p model.

As the atoms of the elements making up the semiconductors are brought together
to form the crystal, the valence electronic states are perturbed by the presence of
neighboring atoms. While the original atomic functions describing the valence elec-
trons are, of course, no longer eigenstates of the problem, they can be used as a
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good approximate set of basis states to describe the “crystalline” electrons. This
motivates the tight-binding method. For most semiconductor materials of interest,
the atomic functions |α, j 〉 (centered at atom j ) required to describe the outermost
valence electrons are the s, px , py , and pz types, see Table 1.2. Moreover, since
there are more than one atom per unit cell, the Bloch function is in the form of

Ψk(r)=
∑
Ri

∑
α

∑
j

Cα,j (k)|α, j, r − rj − Ri〉eik·Ri (1.42)

where the sum over Ri runs over all unit cells, α is the index of the different atomic
functions |α, j 〉 used in the basis, and rj denotes the spatial position of atom j in
unit cell Ri .

Once the expansion set for the crystal states has been chosen, the coefficients
Cα,j remain to be determined. To this end, the Schrödinger equation is in the form
of a secular determinant∣∣〈α′, j ′, r − rj ′ − Ri′

∣∣H −E
∣∣Ψk(r)

〉∣∣ = 0 (1.43)

where H is the Hamiltonian of the system under investigation.
In theory, one can calculate the matrix elements in the secular determinant,

Eq. (1.43), by first determining the crystal potential. This however is very diffi-
cult because of the complexity of the problem. Slater and Koster were the first to
advocate the use of the tight-binding method as an empirical technique. In their
formalism, the matrix elements of the secular determinant are treated as disposable
constants. Energy levels in the band structure can be obtained and fitted with the
measurement data by adjusting the disposable constants.

In 1983 Vogl, Hjalmarson and Dow published their results of a sp3s∗ nearest-
neighbor semi-empirical tight-binding theory of energy bands in zincblende and
diamond structure materials [34]. The theory was developed from the sp3 tight-
binding model of Harrison [35]. Here we introduce five Löwdin orbitals, |s〉, |px〉,
|py〉, |pz〉, and |s∗〉, at each atomic site Ri . The Hamiltonian matrix element is
denoted as h(αβ, ij) between the αth orbital on the ith atomic site |α, i〉 and the
βth orbital on j th atomic site |β, j 〉, where either i = j or i is a nearest neighbor
of j . The values of these matrix elements are listed in Table 1.3 for crystal Si, C, Ge,
AlAs, InAs, and GaAs [34]. In Table 1.3 the diagonal elements are denoted as E (or-
bital energies), and the off-diagonal elements are V (interaction energies). For both
orbital and interaction energies, s, p and s∗ denote s, p and s∗ orbitals, a denotes
atomic site anion, and c the cation. V (x, x) represents V (pxa,pxc), V (pya,pyc)

and V (pza,pzc). V (x, y) represents V (pxa,pyc), while other parameters can be
derived from the ones listed in Table 1.3 after proper considerations of orbital sym-
metries.

Figure 1.12 shows the energy band structures of bulk silicon and carbon calcu-
lated by the sp3s∗ tight-binding model. As schematically shown in Fig. 1.4, because
of the large number of atoms in the bulk material, energy levels form bands. Mathe-
matically, the second equation in Eq. (1.34) actually implies N → ∞. In reality, N is
always finite in which case the second equation in Eq. (1.34) assumes that the effects
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Table 1.3 Energy band structure parameters [eV] for sp3s∗ tight-binding band calculation [34]

Si C Ge AlAs InAs GaAs

E(s, a) −4.2000 −4.5450 −5.8800 −7.5273 −9.5381 −8.3431

E(p,a) 1.7150 3.8400 1.6100 0.9833 0.9099 1.0414

E(s∗, a) 6.6850 11.3700 6.3900 7.4833 7.4099 8.5914

E(s, c) −4.2000 −4.5450 −5.8800 −1.1627 −2.7219 −2.6569

E(p, c) 1.7150 3.8400 1.6100 3.5867 3.7201 3.6686

E(s∗, c) 6.6850 11.3700 6.3900 6.7267 6.7401 6.7386

V (s, s) −8.3000 −22.7250 −6.7800 −6.6642 −5.6052 −6.4513

V (x, x) 1.7150 3.8400 1.6100 1.8780 1.8398 1.9546

V (x, y) 4.5750 11.6700 4.900 4.2919 4.4693 5.0779

V (sa,pc) 5.7292 15.2206 5.4649 5.1106 3.0354 4.4800

V (sc,pa) 5.7292 15.2206 5.4649 5.4965 5.4389 5.7839

V (s∗a,pc) 5.3749 8.2109 5.2191 4.5216 3.3744 4.8422

V (pa, s∗c) 5.3749 8.2109 5.2191 4.9950 3.9097 4.8077

ΔEv 2.63 0.0 0.4 0.1 0.0

Fig. 1.12 Energy band structures of diamond-structure (a) silicon and (b) carbon calculated by the
sp3s∗ tight-binding model. The horizontal dashed line marked as Ef is referred to as the Fermi
level for pure material at zero temperature

of the real boundaries of the solids with a finite number of unit cells on the electron
states under investigation in the solid is negligibly small since N is very large.

Knowing the energy band structure, we then fill the energy levels by the available
valence electrons in the solid. At zero temperature and for pure semiconductor, all
energy levels below the horizontal dashed line Ef in Fig. 1.12 are fully occupied,
Energy levels above Ef are completely empty. Ef is known as the Fermi level. The
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highest occupied energy band is the valence band, and the lowest unoccupied band
is the conduction band. For almost all semiconductor materials of interest, the top
of the valence band locates at k = 0 (� point). The lowest conduction band states in
Si and C locate somewhere between � and X points, see Fig. 1.12. Because of the
different k values of the valence and conduction band optimal points (the materials
are referred as indirect-band materials), the optical properties of Si and C are rather
bad. However, the lowest conduction band states of III–V materials locate at the �

points so that the optical properties of III–V materials are extremely good. We will
discuss the optical properties of semiconductor materials late.

Now we apply the sp3s∗ tight-binding theory to study Si1−xCx alloy as a means
to further elaborate the tight-binding theory. The realization of many kinds of elec-
tronic and optoelectronic devices in strained layer Si1−xGex /Si heterostructures has
stimulated a great interest in investigating IV–IV binary and ternary alloys [36, 37].
However, the strained epitaxial Si1−xGex layers without misfit dislocations can be
grown on a Si substrate only by a low-temperature growth technique [36]. Moreover,
the application of Si1−xGex /Si materials is restricted by the strain in the epitaxial
layers. To compensate the strain, C atoms with an atomic diameter smaller than
the ones of both Si and Ge atoms are introduced into the Si-Ge system to form
Si1−x−yGexCy alloys. The substitutional C atoms in Si1−yCy and related alloys
also offer an additional parameter for tailoring the energy band structure [37]. The
investigation on Si1−yCy and related alloys is thus of great importance to understand
the bandgap engineering for Si-based semiconductor materials.

In Ref. [34], the top of the valence band, �v
15 = 0 is referred as the reference

energy for every individual material. Referring to the energy band of C, an energy
band offset between C and Si, ΔEv(Si) = �v

15(Si) − �v
15(C) is to be added to the

Si orbital energies, see Fig. 1.12. From available values of the electron affinity (the
electron affinity of silicon is 4.05 eV, whereas for diamond it is much substrate-
orientation-dependent [38], a value of 2.2 eV is obtained for (001)-orientation) it is
easy to obtain the absolute positions of valence bandedges (�v

15) below the vacuum
level: 5.17 eV for Si and 7.8 eV for C. Thus, ΔEv(Si)= 2.63 eV.

For Si1−yCy alloy, the interaction elements are obtained by the well-known d−2

scaling rule [35], where d is the spatial distance between the interacting atoms.
The eigen function of the system is expressed by∑

α,i

C(α, i)|α, i〉

The coefficients in the above linear combination satisfy the eigenvalue equation∑
β,j

h(αβ, ij)C(β, j)=EC(α, i) (1.44)

For crystal system with translational system (i.e., unit cells are periodically posi-
tioned in space), we apply the Fourier transformation

C(α,k)= 1√
N

∑
i

C(α, i)eik·r i



1.4 sp3s∗ Tight-Binding Model 25

(1.45)

H(αβ,kq)= 1

N

∑
ij

h(αβ, ij)ei(k·r i−q·rj )

so that Eq. (1.44) reduces to∑
β,q

H(αβ,kq)C(β,q)=E(k)C(α,k) (1.46)

Here N is the number of unit cells in the system.
Because of the translational symmetry, h(αβ, ij)= h(αβ, r i − rj ),

H(αβ,kq)= δk,qH(αβ,k)= δk,q
∑
ij

h(αβ, ij)eik·(r i−rj )

(1.47)∑
β

H(αβ,k)C(β,k)=E(k)C(α,k)

In a Si1−yCy alloy, h(αβ, ij) is not invariant with respect to lattice translations,
Eqs. (1.47) are thus not valid. However, let us approximate h(αβ, ij) by its mean
value in the limit of long wavelength (small |k| and |q|). In this case, the term
ei(k−q)·rj in Eq. (1.45)

ei(k·r i−q·rj ) = eik·(r i−rj )ei(k−q)·rj (1.48)

can be approximated as constant over a large area of the structure (which is normally
known as the effective medium approximation). Let

h′(αβ, ij)=
∑

mn h(αβ,mn)δrm−rn,r i−rj∑
mn δrm−rn,r i−rj

(1.49)

which is invariant under lattice translations, we then have

H ′(αβ,kq)≈ 1

N

∑
ij

h′(αβ, ij)ei(k·r i−q·rj ) (1.50)

and

H ′(αβ,kq)= δk,qH
′(αβ,k)= δk,q

∑
ij

h′(αβ, ij)eik·(r i−rj )

(1.51)∑
β

H ′(αβ,k)C(β,k)=E(k)C(α,k)

The above equations are mathematically identical to Eqs. (1.47). It must be re-
minded that the above solutions are valid only when |k| and |q| are small. The
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Fig. 1.13 The energy dispersion relations of relaxed and strained Si1−yCy alloys. y = 0,0.25,0.5,
0.75,1.0 (Y. Fu, M. Willander, P. Han, T. Matsuura, and J. Murota, Si-C atomic bond and electronic
band structure of a cubic Si1−yCy alloy, Phys. Rev. B, vol. 58, pp. 7717–7722, 1998)

approximation is generally acceptable for the valence band top at �v
15. For the con-

duction band of an indirect bandgap material like Si and C, a similar but modified
scheme can be performed for conduction band states close to the bandedge. Let k0
be the wave vector of the conduction bandedge state, the interaction in Eq. (1.45)
between two conduction band states close to k0, i.e., k + k0 and q + k0, where |k|
and |q| are small, can be expressed as

H(αβ,k + k0,q + k0)= 1

N

∑
ij

h(αβ, ij)eik0·(r i−rj )ei(k·r i−q·rj ) (1.52)

Writing h(αβ, ij)eik0·(r i−rj ) as the new h(αβ, ij), we are then able to use the above
numerical approximation.

Figure 1.13 shows the energy dispersion relations of relaxed and strained
Si1−yCy alloys as functions of the C mole fraction y, where arrows indicate the
increase of the C mole fraction from 0 to 1.0. Note that the complete dispersion re-
lations are not monotonous functions of the C mole fraction, only parts with arrows
in Fig. 1.13 are. Here we consider two cases. When the Si1−yCy alloy is grown on
a Si substrate, it is strained when the layer is thin. The atomic bond length is uni-
form and fixed by the substrate Si; The atomic bonds become relaxed when the layer
becomes thicker. In the effective medium approximation, the lattice constant of the
relaxed Si1−yCy alloy is obtained by linear interpolation between bond lengths of
C and SiC when y > 0.5, it is obtained from SiC and Si when y < 0.5.

For strained Si1−yCy alloy, both the valence and conduction bands are vertically
shifted along the energy axis following the increase of the C mole fraction. The
bandgap is indirect and increases monotonically with the C mole fraction. On the
other hand, the valence band of a relaxed Si1−yCy alloy is not much affected by
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the C mole fraction. The bandgap of relaxed Si1−yCy alloy is indirect and increases
with increasing y when y < 0.35. However it becomes a direct-bandgap material
when y > 0.35. The energy bandgap increases with increasing y from 0 to 0.35,
then decreases when increasing y from 0.35 to 0.5. After that, the energy bandgap
increases again with y.

Let us check the validity of the conclusion that the energy bandgap increases with
increasing but small y. It is easy to see that Eq. (1.49) can be rewritten as

h′ = (1 − y)hSi + yhSiC (1.53)

for small y value, where hSi and hSiC are interaction elements in crystal Si and SiC,
respectively. Since the energy bandgap is proportional to the interaction elements,
the above equation indicate an increasing energy bandgap of Si1−yCy as a function
of the C content (the bandgaps of C and SiC are wider than the Si one). It is thus
observed that the conclusion of increasing bandgap with y is very general, even we
are working with the relatively simple sp3s∗ tight binding model.

1.5 Bandedge States

Our goal is essentially to solve the Schrödinger equation to get the eigenenergies and
their associated eigenvectors, i.e., wave functions. The wave functions usually have
too high frequencies to be feasible to calculate explicitly using numerical methods
on computers as an inordinately high number of grid points would be necessary to
capture an acceptable numerical representation of the wave functions. A solution
is to separate the wave functions into an oscillatory part at unit cell scale and a
modulating part which is of the same scale as the solid. This is the basic idea of
the envelope function approximation—the modulating part is called the envelope
function. We write the envelope function as a Bloch function:

Ψnk(r)= eik·runk(r) (1.54)

where n is the state index and k is the wave vector, see Eq. (1.34). The Schrödinger
equation for this wave function is simply

[
p2

2m0
+ V (r)

]
Ψnk(r)=En(k)Ψnk(r) (1.55)

Substituting the factorization into the equation requires some care in evaluating the
product of the momentum operator p and the two parts of the wave function. With
p = −i�∇ and knowing from vector calculus that ∇eik·r = ikeik·r , the product of
the momentum operator and the wave function becomes

−i�∇[
eik·runk(r)

] = −i�eik·r(∇ + ik)unk(r)= eik·r(p + �k)unk(r) (1.56)
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Applying the momentum operator a second time gives eik·r(p + �k)2unk(r), so the
Schrödinger equation can be written in the following way that the oscillatory part
will cancel out:

eik·r
[
(p + �k)2

2m0
+ V (r)

]
unk(r)= eik·rEn(k)unk(r) (1.57)

Expanding the (p + �k)2 term gives

[
p2

2m0
+ V (r)+ �k · p

m0
+ �

2k2

2m0

]
unk(r)=En(k)unk(r) (1.58)

The first two terms are identical to the original Hamiltonian, so if the two other
terms are treated as two small perturbations the Hamiltonian can be expressed as

(H0 +H1 +H2)unk(r)=En(k)unk(r) (1.59)

where

H1 = �

m0
k · p, H2 = �

2k2

2m0

are the first-order and second-order perturbations, respectively.
If the equation is solved for k = 0 with only H0 remaining nonzero, the result is

a set of eigenvectors un0(r), typically at the optimal points such as the � point of
the valence band structures of Si and C bulk materials in Fig. 1.12.

An expression of the Hamiltonian similar to Eq. (1.59) can be formulated for
the electron states in the vicinity of the conduction bandedges of Si and C which
do not locate at � but with a finite k0. For this, we express the wave vector of
the modulation envelope function in terms of k0, i.e., k + k0 so that |k| is small.
Equation (1.58) becomes

[
(p + �k0)

2

2m0
+V (r)+ �k · (p + �k0)

m0
+ �

2k2

2m0

]
un,k+k0(r)=En(k+k0)un,k+k0(r)

(1.60)
For the following discussion we express the eigenfunction using Dirac notation

as |m〉, and eigenvalues Em. The eigenfunction for a given k, |nk〉, is a linear com-
bination of the basis functions:

unk(r)=
∑
m

cnm(k)|m〉 (1.61)

so the objective is now to find the coefficients cnm(k) that form our envelope parts
together with the basis functions at �.

If we insert this linear combination into the Schrödinger equation, we get

H
∑
m

cnm(k)|m〉 =
∑
m

H |m〉cnm(k)=En(k)
∑
m

cnm(k)|m〉 (1.62)
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Multiply this on the left with the conjugate of any, say |�〉, of the basis functions,
we obtain∑

m

〈�|H |m〉cnm(k)=En(k)
∑
m

cnm(k)〈�|m〉 =En(k)cn�(k) (1.63)

The right-hand part is the result of wave function’s orthonormal property 〈�|m〉 =
δ�m.

Inserting the expanded Hamiltonian equation (1.59), multiplying with the conju-
gate and integrating over an unit cell, give

En(k)cn�(k)=
(
E� + �

2k2

2m0

)
cn�(k)+

∑
m

�

m0
〈�|k · p|m〉cnm(k) (1.64)

We first set cn�(k)= δn� on the right side of the above Eq. (1.64), thus to neglect
the wave function corrections from which we obtain the first-order correction to the
energy of state |nk〉

En(k)cnn(k)=
(
En + �

2k2

2m0
+ �

m0
〈n|k · p|n〉

)
cnn(k) (1.65)

which is

En(k)=En + �
2k2

2m0
, cnn(k)= 1 (1.66)

since 〈n|p|n〉 = 0. This is normally referred to as the first-order approximation.
Similarly, for � �= n, Eq. (1.64)

En(k)cn�(k)=
(
E� + �

2k2

2m0

)
cn�(k)+ �

m0
〈�|k · p|n〉 (1.67)

so that the first-order correction to the wave function is

cn�(k)= �

m0

〈�|k · p|n〉
En −E�

(1.68)

by using Eq. (1.66). Note that in Eq. (1.67) we have implicitly assumed that both
�〈�|k · p|m〉/m0 and cnm (m �= n) are small so that their products on the right side
are neglected, so that only the product of �〈�|k ·p|n〉/m0 and cnn (cnn = 1) remains.

By inserting the above expression back into Eq. (1.64), we have obtained the
energy of state unk(r) at the second-order approximation

En(k)=En + �
2k2

2m0
+ �

m0

∑
��=n

|〈�|k · p|n〉|2
En −E�

(1.69)

The result can be expressed in terms of an effective mass m∗:

En(k)=En +
∑
i,j

�
2

2m∗
ij

kikj (1.70)
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where i, j = x, y, z, and

m0

m∗
ij

= δij + 2

m0

∑
��=n

〈n|pi |�〉〈�|pj |n〉
En −E�

(1.71)

Note here that the effective mass can be anisotropic which can be utilized for optical
coupling in quantum well photodetection [39].

It can be easily seen that a narrow bandgap, which leads to two states being close
to each other, i.e., En − E� is small in the above equation, gives a small effective
mass. This agrees very well with the experimental data which indicates that InSb
has both the smallest bandgap and the lowest effective mass.

For semiconductors of device application interest, we concentrate on the con-
duction and valence bands of cubic semiconductors with both diamond (silicon and
germanium) and zincblende symmetries (III–V group).

Refer to Fig. 1.12, the conduction band generally consists of three sets of band
minima located at the �15-point at k = 0, the L-points at k = (π/a,π/a,π/a),
and along the Δ lines from (0,0,0) to (π/a,0,0), from (0,0,0) to (0,π/a,0),
and from (0,0,0) to (0,0,π/a), where a is the lattice constant. The valence band
tops are located at �v

15. Two bands are normally degenerate at this point, which are
heavy-hole and light-hole bands; the third one is the spin-split-off band due to the
spin-orbital interaction.

In close proximity to an energy minimum at k0 in the conduction band, the en-
ergy dispersion relationship Ek can be expressed as

E(k) = E(k0)+
∑
i

∂E(k)

∂ki

∣∣∣∣
k=k0

(ki − k0,i )

+
∑
ij

∂2E(k)

∂ki∂kj

∣∣∣∣
k=k0

(ki − k0,i )(kj − k0,j )+ · · · (1.72)

where i, j = x, y, z. The linear terms vanish because of the spatial invariance under
translation of k → −k. In the region around k0 where the higher orders can be
neglected, the energy dispersion E(k) is approximated by a quadratic function of k:

E(k)=E(k0)+
∑
ij

�
2

2

1

m∗
ij

(ki − k0,i )(kj − k0,j )

(1.73)
1

m∗
ij

= 1

�2

∂2Ek

∂ki∂kj

∣∣∣∣
k=k0

Here 1/m∗
ij is equivalent to the definition of Eq. (1.71). [1/m∗

ij ] for i, j = (x, y, z)

forms a so-called inverse effective-mass tensor w̄, which will have a profound effect
on the optical properties of semiconductor materials to be discussed in Sect. 5.2.
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Two typical band structures are:

1. Spherical band:

E(k)=E(k0)+ �
2(k − k0)

2

2m∗ (1.74)

The conduction bands of III–V materials are well described by the above expres-
sion, see Table 1.4.

2. Ellipsoidal band:

E(k)=E(k0)+ �
2

2

[
(k� − k0,�)

2

m∗
�

+ (kt − k0,t )
2

m∗
t

]
(1.75)

where k� and kt are longitudinal and transverse components of wave vector k,
m∗
� and m∗

t are longitudinal and transverse effective masses. The conduction band
of Si consists of six ellipsoids described by a longitudinal effective mass m∗

� =
0.9163 and a transverse effective mass m∗

t = 0.1905 expressed in the unit of free
electron mass m0 [40]. The six ellipsoids become divided into groups. (1) m∗

z =
m∗
� , m∗

x =m∗
y =m∗

t , degeneracy g = 2; (2) m∗
z =m∗

t , m∗
x =m∗

t , m∗
y =m∗

� , g = 2.
(3) m∗

z = m∗
t , m∗

x = m∗
� , m∗

y = m∗
t , g = 2. Here m∗

x , m∗
y and m∗

z are the effective
masses in the x, y and z directions, respectively.

There are many different effective-mass concepts defined by various physical
properties. When a wave is subjected to an external force F , the acceleration is
given by

dvi
dt

= d

dt

(
1

�

∂Ek

∂ki

)
=

∑
j

1

�

∂2Ek

∂ki∂kj
k̇j (1.76)

where i, j = x, y, z. The above equation can be written as

dvi
dt

=
∑
j

1

m∗
ij

Fj (1.77)

by Eq. (1.40). Here the effective mass m∗ is defined as the acceleration effective
mass. The inverse effective-mass tensor by Eq. (1.73) is the one evaluated at the
band minimal points.

The conductivity effective mass, m∗
c , is defined as the ratio of the electron mo-

mentum to its group velocity
�k

m∗
c

= 1

�

∂Ek

∂k
(1.78)

For a parabolic band, m∗
c =m∗, and for an ellipsoidal band,

3

m∗
c

= 1

m∗
�

+ 2

m∗
t

(1.79)

where m∗
� and m∗

t are longitudinal and transverse effective masses.
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Each electronic state E(k), characterized by k, can be occupied by two electrons,
one spin up and the other spin down. The occupation probability of state E(k) is
given by Fermi distribution function f [E(k),Ef ], where Ef is the Fermi energy.
The electron density n is given by

n=
∫

f
[
E(k),Ef

] 2dk

(2π)3
(1.80)

where the integration is restricted within the first Brillouin zone. See more discus-
sions below in Sect. 1.9 about the density of states. For a simple band of Eq. (1.74),

n=
∫
E(k0)

f (E,Ef )N3(E)dE (1.81)

where N3(E) is the three-dimensional density of states

N3(E)= 1

2π2

(
2m∗

�2

)3/2√
E −E(k0) (1.82)

For a complicated band, Eq. (1.81) can still hold with a more elaborate expres-
sion for N3(E), where the density-of-states effective mass m∗

d is defined in place
of m∗. Note that m∗

d can depend on E. For a parabolic band, m∗
d = m∗, and for an

ellipsoidal band,

m∗
d = [

m∗
�

(
m∗
t

)2]1/3 (1.83)

For simple band of Eq. (1.74) with a density of state N3(E) in Eq. (1.82), the
electron density at temperature T is

n= 1

2π2

(
2m∗

�2

)3/2 ∫
E1/2dE

1 + exp [(E −Ef )/kBT ] (1.84)

where kB is the Boltzmann constant, from which the carrier-concentration effective
mass m∗

cc can be introduced for complicated energy bands so that the above equation
remains intact

(
m∗
cc

)3/2 = 1

(kBT )3/2F1/2(Ef /kBT )

∫
(m∗

d)
3/2E1/2dE

1 + exp [(E −Ef )/kBT ] (1.85)

where

F1/2(x)=
∫

y1/2dy

1 + exp (x − y)
(1.86)

is called Fermi integral of order 1/2.
For more complicated non-parabolic conduction band, a simple analytical way is

usually applied

E(k)
[
1 + αE(k)

] = γ (k) (1.87)


