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Preface

Aperiodic Crystals collects 37 selected papers from the scientific contributions pre-
sented at the Seventh International Conference on Aperiodic Crystals, Aperiodic
2012, held in Cairns, Australia from the 2nd to the 7th of September, 2012 and
organized under the auspices of the Commission on Aperiodic Crystals of the In-
ternational Union of Crystallography (IUCr). It followed Aperiodic’94 (Les Dia-
blerets, Switzerland), Aperiodic’97 (Alpe d’Huez, France), Aperiodic 2000 (Ni-
jmegen, The Netherlands), Aperiodic 2003 (Belo Horizonte, Brazil), Aperiodic
2006 (Zao, Japan) and Aperiodic 2009 (Liverpool, U.K.). The Aperiodic series of
conferences in turn followed on four earlier conferences held under the title of Mod-
ulated Structures, Polytypes and Quasicrystals (MOSPOQ). The eighth conference
in the Aperiodic series will be held in Prague in 2015.

The program was wonderfully diverse, covering a wide range of topics including:
the mathematics of aperiodic long-range order and the fascinating types of tilings
resulting from it; the synthesis, growth and stability of metallic aperiodic crystals
and related complex metallic alloys; new methods and associated structural char-
acterisation studies of aperiodic crystals; theoretical and experimental studies of
the electronic, magnetic and other physical properties of aperiodic crystals; partial
order, correlated disorder, and structured diffuse scattering; modulated structures,
quasicrystals and approximants; soft-matter quasicrystals, and aperiodic ordering in
bio-molecules and proteins; the dynamics of aperiodic crystals; as well as aperiodic
surfaces, thin films and adsorbates. This impressive diversity in subject matter is
well reflected in the contributions to this volume.

The conference was attended by more than 110 delegates from 23 different coun-
tries, including Dan Shechtman from Israel, Laureate of the 2011 Nobel Prize in
Chemistry. Prof. Shechtman delivered a special celebratory Nobel lecture on the
30th anniversary year of his pioneering electron-diffraction characterization of the
first quasicrystal on April 8, 1982. The introductory tutorial talk by Ted Janssen
highlighted the fact that we also celebrated a half a century of work on aperiodic
crystals, which could be considered as dating back to the pioneering work of Pim
de Wolff on γ -Na2CO3 around 1962 and published in 1964. Presentations at the
conference included 3 invited introductory tutorials, 11 invited talks, 46 contributed
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talks, and 43 poster presentations, all discussing state-of-the-art research in this fas-
cinating field of scientific endeavour. What we know and what we still don’t know
about aperiodic order was carefully examined and hotly debated throughout this
conference.

We would like to thank all the participants for coming the very long way to
Australia as well as for their enthusiastic and considered contributions to, and par-
ticipation in, the conference. Special thanks are due to the International Program
Committee for their work in the organisation of the conference program and to the
members of the Local Organizing Committee for making Aperiodic 2012 the very
successful and highly stimulating meeting it was. We would also like to thank the
wonderful staff from Springer for their help in the production of this volume. Fi-
nally, we gratefully acknowledge financial and other support from our sponsors.
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Chapter 1
A Brief History of Aperiodic Crystals:
1962–2012

T. Janssen

Abstract About 50 years ago, it was shown that there are solid state systems with
perfect order but without lattice periodicity. These systems were called crystalline
phases because of the order and incommensurate because of the lack of periodic-
ity. They formed a challenge for crystallographers and physicists to understand the
structure, the physical properties and the reason for their appearance. Later other
classes of this type were found (occupation modulated crystals, incommensurate
magnetic systems, incommensurate composites), the most important one being that
of quasicrystals. The discovery of the latter class in 1982 caused a huge increase
in interest. The first conferences on this new type of materials were called Mod-
ulated Crystals, later polytypes and quasicrystals were included in the title MO-
SPOQ. Nowadays these conferences continue under the name Aperiodic (Crystals).
The field has become very active worldwide, and our insight into structure and prop-
erties has increased impressively. A brief sketch of the development of the field is
given in this chapter.

1.1 History

On April 21st, 1912, Friedrich, Knipping and Laue [1] followed a proposal by Max
Laue (after 1913 von Laue) and performed an experiment throwing X-rays onto a
crystal of copper sulfate [2]. They found the sharp diffraction spots foreseen by Laue
showing that the crystal has lattice periodicity. Shortly afterwards the Braggs devel-
oped the fundamental techniques of crystallography. For half a century the paradigm
was that ideal crystals are built of identical unit cells. Later the International Union
of Crystallography incorporated this property into the definition of a ‘crystal’. This
idea remained intact for half a century. Then systems with also sharp diffraction
spots but without lattice periodicity were found. The idea to consider these materi-
als also as crystals reached the larger crystallographic community much later, after
Dan Shechtman had discovered quasicrystals on April 8th, 1982. The first aperiodic
crystals, however, were discovered earlier, but this did not attract so much attention.

T. Janssen (B)
University of Nijmegen, Nijmegen, The Netherlands
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2 T. Janssen

It is more difficult to state when exactly the first aperiodic crystal was found. In
1960, a spin wave was found with a period that did not fit the periodicity of the un-
derlying lattice [3], but one did not observe an effect on the positions of the atoms.
In 1963, satellites were seen in NaNO2 [4], next to the main reflections. These were
interpreted as micro-domains, in a very small (1.5 degree centigrade) temperature
interval, around the ferroelectric phase transition and there was no discussion of the
incommensurate character. But in 1964 the first incommensurately modulated struc-
ture was found. So there is some reason to consider 1962 (between 1960 and 1964)
as the beginning of the field.

1.1.1 Incommensurate Modulated Phases and Composites

In 1964, Pim de Wolff and collaborators [5] found satellite peaks in the γ -phase of
anhydrous Na2CO3: next to the main reflections of the monoclinic basic structure
there were peaks at positions ha∗+kb∗+�c∗+m(αa∗+βb∗). First they were found
in powder, later also in a single crystal. The interpretation was a periodic displace-
ment of the atoms, with wave vector q which has irrational indices α and β with
respect to the reciprocal lattice vectors a∗ and b∗ of the basic structure. The conclu-
sion is that the structure is not lattice periodic. Mathematically, it is a quasiperiodic
structure, but to stress the aperiodicity these phases were called incommensurately
modulated phases. Soon other examples of such structures followed, e.g. thiourea
and K2SeO4, to mention two examples which were studied extensively. For such
structures the positions of the atoms can be given as

rnj = n+ rj + uj
(
q.(n+ rj )

)
, (1.1)

where n are the lattice points of the lattice periodic basic structure, rj the position
of the j th atom in the unit cell, u a periodic function with period 1. Later, also
structures with 2 or more modulation vectors q were found. The diffraction spots
are at positions

H= ha∗ + kb∗ + �c∗ +
d∑

s=1

msqs . (1.2)

d is the number of independent modulation wave vectors. Main reflections are the
peaks with ms = 0. Because main reflections are mapped onto main reflections, the
symmetry of the diffraction must be one of the three-dimensional crystallographic
point groups.

A new type of aperiodic crystal was found in 1975. Tetrathiafulvalene (TTF)
pentaiodide has a subsystem consisting of TTF molecules with as second subsys-
tem iodide in channels, the compound having composition TTF7I5−δ [6]. The basic
structure of the TTF system is C-centered monoclinic, that of the iodine system A-
centered monoclinic, but the lattice constants are incommensurate. Therefore, one
needs more than 3 basis vectors to index the diffraction spots with integers: one
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additional vector is needed. A second example is Hg3−δAsF6 [7], consisting of 3
subsystems: the AsF6 host lattice, and two systems of mercury chains, one in the
a-direction, and one in the b-direction. Each subsystem has a basic structure with
3 basis vectors for their reciprocal lattices. Nevertheless, instead of nine, one only
needs four basis vectors for indexing the diffraction peaks with integers. Such struc-
tures with mutually incommensurate subsystems are called incommensurate com-
posites. Since these first examples many other have been found. A particular class is
that of misfit structures, layered structures for which the layers do not have the same
translation symmetry, not even for the basic structure one has to consider, because
generally the layers are modulated by the interaction with the other layers.

The diffraction pattern shows reflections common to several subsystems, reflec-
tions corresponding to main peaks for one of the subsystems and summation reflec-
tions corresponding to modulations of one subsystem caused by the interaction with
other subsystems. The symmetry of the diffraction pattern consists of all orthog-
onal transformations mapping each spot to another of the same intensity. Because
subsystems may be mapped on each other, the crystallographic condition no longer
holds: in principle, the symmetry may contain non-crystallographic elements, i.e.
elements which are impossible for a three-dimensional lattice periodic structure,
such as a five-fold rotation. However, such symmetries have not been observed for
composites.

1.1.2 Aperiodic Tilings and Quasicrystals

Non-crystallographic symmetries play a role in mathematical constructions, aperi-
odic tilings of the plane. The best known example is the Penrose tiling, a tiling of the
plane with copies of two different tiles, without gaps or overlaps. One realization of
a Penrose tiling is by means of rhombs, one with an angle of 36◦ and with an angle
of 72◦. An early overview was given by Martin Gardiner in the January 1977 issue
of Scientific American. Crystallographers played with the idea that there could be
crystals with a comparable structure. Alan Mackay [8] showed experimentally that
the diffraction pattern has ten-fold symmetry. Later this could be proven mathemat-
ically. However, such structures, aperiodic and quasiperiodic, were not known by
then.

Therefore, it was a big surprise when Dan Shechtman found real structures with
sharp diffraction peaks and ten-fold symmetry in the diffraction pattern. He studied
rapidly cooled AlMn particles and observed this phenomenon. Unfortunately, the
referees were not aware of the existence of tilings with these properties, or they did
not believe that this could happen in nature and did not accept the explanations for
the findings. However, other explanations could all be proven to be false. It took
two and a half years before the results could be published [9]. The new material did
not only show ten-fold symmetry in the diffraction, but even the symmetry of an
icosahedron. It became known as a quasicrystal. This discovery can be considered
as the most important event in the history of aperiodic crystals.
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Mackay already had used the term ‘quasi-lattice’ for the diffraction pattern of the
Penrose tiling. For the new material Levine and Steinhardt proposed the term ‘qua-
sicrystal’. It is supposed to mean ‘quasiperiodic crystal’, but the latter term is actu-
ally too broad. First, according to the original mathematical definition, any periodic
function is also quasiperiodic; and second, there are aperiodic and quasiperiodic
structures that are usually not considered to be quasicrystals, like the incommen-
surate phases. Actually, there is not yet a consensus about the term ‘quasicrystal’.
‘Aperiodic crystal’ is the general term for a structure with sharp diffraction peaks
that is quasiperiodic and not lattice periodic.

After the discovery of the quasicrystalline structure in AlMn, new examples were
rapidly found. Next to the icosahedral quasicrystals, there are the decagonal qua-
sicrystals with quasiperiodicity in planes perpendicular to an axis along which the
crystal is periodic. Also new classes of icosahedral quasicrystals were discovered
which turned out to be of better quality and stable (the very small AlMn quasicrys-
tals are unstable). Several families of ternary alloys (AlCuFe, AlMnPd, etc.) and
binary alloys (e.g. YbCd) were developed. The larger size and higher quality were
essential for the study of crystallographic and physical properties.

1.1.3 Incommensurate Magnetic Structures

As mentioned before, aperiodicity in crystals was found as an incommensurate spin
wave in MnAu2. There no influence of the spin wave on the crystal structure was
reported. Such an interaction was found in chromium [10]. Below the Curie temper-
ature, satellites are observed with a modulation wave vector equal to the spin wave
vector. The coupling between spin and lattice causes a modulation, a mechanism
comparable to the coupling between charge density waves and the lattice, leading to
a modulation of the latter. Analogously to the displacive modulation (Eq. (1.1)), the
spin wave at discrete positions may be written as

S(n, j)=
∑

H

Ŝ(H) exp
(
iH.(n+ rj )

)
. (1.3)

Whereas displacive modulations are usually transversal or longitudinal, spin struc-
tures may show complicated spiral structures, especially in systems with rare-earth
elements.

1.2 Superspace Treatment

A quasiperiodic function f (x) is a function that is the restriction of a function g,
periodic in each of its n variables, to a line in the n-dimensional space: f (x) =
g(α1x, . . . , αnx), where the numbers αi are irrational. Notice that for n = 1 the
function is periodic: a periodic function is also quasiperiodic. It may be shown that
the projection of the Fourier transform of f (x) on the line consists of sharp peaks at
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positions q =∑n
i=1miqi . This corresponds to the observation by de Wolff that the

peaks for γ -Na2CO3 can be seen as the projection points of a regular lattice in four
dimensions.

The diffraction spots of a quasiperiodic crystal can be labeled with n indices. If
n = 3 (or the dimension of the crystal which could also be 1 or 2), the crystal has
lattice periodicity and the spots belong to the reciprocal lattice. In general, the spots
are given as points on a Fourier module: linear combinations of n basis vectors a∗i .
The number n is the rank of the Fourier module. If the orthogonal 3-dimensional
transformation R leaves the pattern (inclusive intensities) invariant, one has

Ra∗i =
n∑

j=1

Γij (R)a∗j . (1.4)

Because there are only a finite number of peaks above a certain intensity around the
origin, the matrices Γ (R) form a finite group, and group theory then tells us that
this group on another basis consists of orthogonal matrices. Because the pattern in 3
dimensions is left invariant, the elements R correspond to pairs (RE,RI ) of orthog-
onal transformations, in 3 and (n− 3) dimensions, respectively. The n-dimensional
group then leaves an n-dimensional (reciprocal) lattice invariant, and its direct lat-
tice as well. This is the general idea of constructing a periodic n-dimensional struc-
ture for which the restriction to 3 dimensions gives the physical, aperiodic crystal.
An alternative way is the following. Suppose the aperiodic crystal has a density
ρ(r). Its Fourier component is non-zero only for points of the Fourier module, and
these correspond to points of the n-dimensional reciprocal lattice. Then one can
construct a lattice periodic function in n-dimensions

ρ(r)=
∑

H

ρ̂(H) exp(iH.r)→ ρ(r, rI )=
∑

H

ρ̂(H) exp
(
i(H.r+HI .rI )

)
. (1.5)

In the case of point atoms, the function ρ(rE, rI ) is restricted to (n−3)-dimensional
hypersurfaces, called atomic surfaces. These may extend to infinity or be of finite
volume, when they are disjunct. It is the goal of structure determination to find
position and shape of these atomic surfaces. On them an occupation function may
be defined which determines the probability of finding a certain chemical species
there.

Because the projection of the lattice on internal space is a dense set, the energy
of every 3-plane through a point of this set is the same, and this corresponds to
a global translation along internal space. In many cases, local shifts do not cost
much energy. Statically, this corresponds to phason disorder, dynamically to phason
excitations (either jumps or collective motions). At finite temperature, there will be
phason disorder which shows itself in points outside the atomic surfaces which may
occur with a certain probability. The disorder could contribute to the entropy of the
system, and in turn this might influence the balance between periodic and aperiodic
structures.

Since the function ρ(rE, rI ) is lattice periodic, its symmetry group is an n-
dimensional space group, a superspace group. An element g is a combination of
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a separable orthogonal transformation (RE,RI ), where the two components are or-
thogonal transformations in physical and internal space, respectively, and a pair of
transformations (vE,vI ) of translations in these 2 subspaces. Its action on ρ(rE, rI )
is given by

Tgρ(rE, rI )= ρ
(
R−1
E (rE − vE),R

−1
I (rI − vI )

)
(1.6)

and on its Fourier transform by

Tgρ̂(k)= exp
(
i(kE.vE + kI .vI )

)
ρ̂
(
R−1
E k
)
. (1.7)

This formula gives the systematic extinctions associated with the superspace group:
if Rk= k, then ρ̂(k)= 0, unless the argument of exp is a multiple of 2π .

Let us consider this procedure for the various families.

1.2.1 Incommensurate Modulated Phases and Composites

De Wolff [11] noticed that the positions of the diffraction pattern (Eq. (1.2)) for
d = 1 can be seen as the projection of a reciprocal lattice in 4 dimensions. As 4th
dimension one can consider the phase of the modulation wave (Eq. (1.1)). Then one
gets

rnj (φ)= n+ rj + uj
(
q.(n+ rj )+ φ

)
, (1.8)

which is equivalent to the expression to obtain a quasiperiodic function from a pe-
riodic function in a higher-dimensional space. The symmetry of the pattern (1.8) is
a four-dimensional space group. Such space groups had been used by Janner and
Janssen for the study of space-time symmetries of electrodynamic systems. Then
the phase φ is taken over by the time t . Together the approach could be generalized
to more general modulated phases, and later to general quasiperiodic crystals. This
has been dealt with in the beginning of this section (Eq. (1.5)).

For incommensurate composites each subsystem (ν) has a lattice periodic basic
structure with a reciprocal lattice on a basis aν∗i . A basis for the Fourier module, the
set generated by all diffraction spot positions, is given by a∗i (n = 1, . . . , n)). The
former can be expressed in the latter by aν∗i =

∑
j Z

ν
ija∗j . The basis a∗i can be em-

bedded into an n-dimensional space, and consequently the reciprocal and the direct
lattice of each subsystem is embedded in an n-dimensional space. Each subsystem
is modulated by the interaction with the other subsystems. This means that the main
peaks of one may coincide with satellite peaks of other subsystems. In addition,
there may be other modulations as well, which would increase the dimension of the
superspace, but we shall disregard that possibility here.

1.2.2 Aperiodic Tilings and Quasicrystals

With some effort it is possible to index the diffraction pattern made by Mackay [8].
It has rank four, the symmetry group is the group 5̄m corresponding to a finite group
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of integer matrices, for which one can determine the invariant lattice in 4 dimensions
and the unit cell. The problem is the determination of the atomic surfaces in this unit
cell. It turns out that one has 4 different and disjunct atomic surfaces, all pentagons,
of different size and orientation.

This illustrates the problems for the description of quasicrystals. The trivial part
is the determination of the unit cell (or the asymmetric unit cell). This follows eas-
ily from the positions of the diffraction spots and the symmetry of the pattern. For
decagonal (and octagonal or dodecagonal) quasicrystals the dimension of the su-
perspace is five, for icosahedral quasicrystals six. Like for the Penrose tiling, the
atomic surfaces here are disjunct. So one has to determine the position of these
atomic surfaces and their shape. Moreover, there may be chemical order or disor-
der on the atomic surfaces. In the determination, the knowledge of the superspace
group may help. Moreover, there is a closeness condition. This means the follow-
ing. Two atomic surfaces with nearby positions in physical space do not overlap in
projection on internal space. But if one changes the position of the n-dimensional
crystal in internal space and an intersection point of an atomic surface with physical
space vanishes, a new intersection point on another atomic surface should appear.
This means that the projection of a border of an atomic surface should coincide with
that of another atomic surface. This is the closeness condition which poses limita-
tions on the shape of the atomic surfaces. Another helpful fact can be the existence
of an approximant, a lattice periodic structure with similar chemical composition
and similar local ordering. There are a number of structure models for ternary sys-
tems. Using the knowledge of the structure of an approximant, one has been able to
determine the structure of the binary icosahedral YbCd [12].

1.2.3 Incommensurate Magnetic Structures

The description of incommensurate magnetic structures (Eq. (1.3)) and their effect
on the nuclear structure in superspace follows the same lines. Both the spin waves
and modulation waves may be embedded in superspace. The superspace group of
the nuclear structure consists of all elements leaving it invariant. For the spin system
one may introduce the time reversal operator θ . Then the action of the combination
of a superspace group element g and θ on the spin wave in superspace is

TgθS(rE, rI )=−Det(RE)S
(
g−1(rE, rI )

)
, (1.9)

and for g itself the same expression holds without the minus-sign. The group of
all elements g and gθ which leave S invariant is the magnetic superspace group.
This group and the corresponding structure have been determined for several aperi-
odic magnetic structures such as chromium, rare-earth compounds and multiferroics
[13–15].

1.3 Phase Transitions

As in conventional 3-dimensional crystals, aperiodic crystals may show phase tran-
sitions in the composition–pressure–temperature space. However, the variety is big-
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ger for aperiodic systems. In the first place, one has to distinguish transitions where
the dimension of superspace does not change, and those where there is a difference
in dimension at the phase transition. An example of the former, is a transition to
a superstructure, for example, a change in centering. If the transition is 2nd order,
the order parameter is related to irreducible representations of the high-symmetry
group, and one can apply Landau’s theory of phase transitions.

Phase transitions where the dimension changes, are more typical for aperiodic
crystals. Examples are the transition from an unmodulated to a modulated structure.
These are often of 2nd order and related to a soft mode, a vibration mode becoming
unstable at the transition. The appearing modulated structure may be described us-
ing irreducible representations of the symmetry of the unmodulated phase, at least
near the phase transition. There is a relatively simple connection between such irre-
ducible representations and the superspace group of the modulated phase [16]. Also
modulations of quasicrystals may be described in this way, e.g. the icosahedral mod-
ulation of an icosahedral quasicrystal is a transition from a six- to a 12-dimensional
structure.

For incommensurate composites the phase transition may correspond to a change
in the relationship between the subsystems. Examples of such phase transitions have
been observed in nonadecane-urea [17]. In the phase diagram, one finds structures
with rank 3, 4 and 5.

1.4 Conclusion

In 50 years the field of aperiodic crystals has grown to a rich and important topic.
There is a very large variety of systems, and these are interesting from various points
of view. The number of systems is large, and so is the total amount of such crystals,
because many minerals belong to this class of materials. Although many mathemat-
ical, physical and chemical questions have been answered, there still remain many
fundamental open questions concerning the origin of aperiodic order, the growth of
the order, the reason for the stability, and the character of elementary excitations.
Finally, the question remains in how far this class of materials may lead to new
applications.

Additional information “http://www.janssenweb.net/ted/janssen.htm” and the
book “Aperiodic Crystals” by Ted Janssen, Gervais Chapuis and Marc de Boissieu,
Oxford University Press 2007.
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Chapter 2
Squiral Diffraction

Uwe Grimm and Michael Baake

Abstract The Thue–Morse system is a paradigm of singular continuous diffraction
in one dimension. Here, we consider a planar generalisation, constructed by a bijec-
tive block substitution rule, which is locally equivalent to the squiral inflation rule.
For balanced weights, its diffraction is purely singular continuous. The diffraction
measure is a two-dimensional Riesz product that can be calculated explicitly.

2.1 Introduction

The diffraction of (fully) periodic systems and of aperiodic structures based on cut
and project sets (or model sets) is well understood; see [4, 5] and references therein.
These systems (in the case of model sets under suitable assumptions on the window)
are pure point diffractive, and the diffraction can be calculated explicitly.

The picture changes for structures with continuous diffraction. Not much is
known in general, in particular for the case of singular continuous diffraction, even
though both absolutely and singular continuous diffraction show up in real systems
[13, 14]. The paradigm of singular continuous diffraction is the Thue–Morse chain,
which in its balanced form (constructed via the primitive inflation rule 1 �→ 11̄,
1̄ �→ 1̄1 with weights 1 and 1̄=−1, say) shows purely singular continuous diffrac-
tion. This was shown by Kakutani [10], see also [1], and the result can be extended
to an entire family of generalised Thue–Morse sequences [3].

Here, we describe a two-dimensional system which, in its balanced form, has
purely singular continuous diffraction. For mathematical details, we refer to [6].
Again, it is possible to obtain an explicit formula for the diffraction measure in
terms of a Riesz product [12, Sect. 1.3], with convergence in the vague topology.
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Fig. 2.1 The primitive
inflation rule for the squiral
tiling of the Euclidean plane

Fig. 2.2 Patch of the squiral tiling obtained by two inflation steps from the central seed

Fig. 2.3 Equivalent block
inflation rule for the squiral
tiling of Fig. 2.2

2.2 The Squiral Block Inflation

The squiral tiling (a name that comprises ‘square’ and ‘spiral’) was introduced in [8,
Fig. 10.1.4] as an example of an inflation tiling with prototiles comprising infinitely
many edges. The inflation rule is shown in Fig. 2.1; it is compatible with reflection
symmetry, so that the reflected prototile is inflated accordingly.

A patch of the tiling is shown in Fig. 2.2. Clearly, the tiling consists of a two-
colouring of the square lattice, with each square comprising four squiral tiles of
the same chirality. The two-colouring can be obtained by the simple block inflation
rule shown in Fig. 2.3, which is bijective in the sense of [11]. Again, the rule is
compatible with colour exchange. The corresponding hull has D4 symmetry, and
also contains an element with exact individual D4 symmetry; see [6] for details and
an illustration.

Due to the dihedral symmetry of the inflation tiling, it suffices to consider a tiling
of the positive quadrant. Using the lower left point of the square as the reference
point, the induced block inflation ρ produces a two-cycle of configurations v and
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ρv. They satisfy, for all m,n≥ 0 and 0≤ r, s ≤ 2, the fixed point equations

(ρv)3m+r,3n+s =
{
vm,n, if r ≡ s ≡ 0 mod 2,

vm,n, otherwise.
(2.1)

2.3 Autocorrelation and Diffraction Measure

For a fixed point tiling under ρ2, we mark each (coloured) square by a point at
its lower left corner z ∈ Z2. For the balanced version, each point carries a weight
wz = 1 (for white) or wz = 1̄ = −1 (for grey). Consider the corresponding Dirac
comb

ω=wδZ2 =
∑

z∈Z2

wzδz, (2.2)

which also is a special decoration of the original squiral tiling. Following the ap-
proach pioneered by Hof [9], the natural autocorrelation measure γ of ω is defined
as

γ = ω� ω̃ := lim
N→∞

(ω|CN ) ∗ (ω̃|CN )
(2N + 1)2

, (2.3)

where CN stands for the closed centred square of side length 2N . Here, μ̃ denotes
the measure defined by μ̃(g) = μ(g̃) for g ∈ Cc(R

2), with g̃(x) := g(−x) (and
where the bar denotes complex conjugation). The autocorrelation measure γ is of
the form γ = ηδZ2 with autocorrelation coefficients

η(m,n)= lim
N→∞

1

(2N + 1)2

N∑

k,�=−N
wk,�wk−m,�−n. (2.4)

All limits exists due to the unique ergodicity of the underlying dynamical system
[6], under the action of the group Z

2.
Clearly, one has η(0,0)= 1, while Eq. (2.1) implies the nine recursion relations

η(3m,3n) = η(m,n),
η(3m,3n+ 1) = −2

9
η(m,n)+ 1

3
η(m,n+ 1),

η(3m,3n+ 2) = 1

3
η(m,n)− 2

9
η(m,n+ 1),

η(3m+ 1,3n) = −2

9
η(m,n)+ 1

3
η(m+ 1, n),

η(3m+ 1,3n+ 1) = −2

9

(
η(m+ 1, n)+ η(m,n+ 1)

)+ 1

9
η(m+ 1, n+ 1), (2.5)
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η(3m+ 1,3n+ 2) = −2

9

(
η(m,n)+ η(m+ 1, n+ 1)

)+ 1

9
η(m+ 1, n),

η(3m+ 2,3n) = 1

3
η(m,n)− 2

9
η(m+ 1, n),

η(3m+ 2,3n+ 1) = −2

9

(
η(m,n)+ η(m+ 1, n+ 1)

)+ 1

9
η(m,n+ 1),

η(3m+ 2,3n+ 2) = 1

9
η(m,n)− 2

9

(
η(m+ 1, n)+ η(m,n+ 1)

)
,

which hold for allm,n ∈ Z and determine all coefficients uniquely [6]. The autocor-
relation coefficients show a number of remarkable properties, which are interesting
in their own right, and useful for explicit calculations.

Since the support of ω is the lattice Z
2, the diffraction measure γ̂ is Z2-periodic

[2], and can thus be written as

γ̂ = μ ∗ δZ2 ,

where μ is a positive measure on the fundamental domain T
2 = [0,1)2 of Z2. One

can now analyse γ̂ via the measure μ, which, via the Herglotz–Bochner theorem, is
related to the autocorrelation coefficients by Fourier transform

η(k)=
∫

T2
e2π ikz dμ(z),

where k = (m,n) ∈ Z2 and kz denotes the scalar product. We now sketch how to
determine the spectral type of μ, and how to calculate it.

Defining Σ(N) :=∑N−1
m,n=0 η(m,n)

2, the recursions (2.5) lead to the estimate

Σ(3N)≤ 319

81
Σ(N),

so that Σ(N)/N2 −→ 0 as N →∞. An application of Wiener’s criterion in its
multidimensional version [6, 7] implies that μ, and hence also the diffraction mea-
sure γ̂ , is continuous, which means that it comprises no Bragg peaks at all.

Since η(0,1)= η(1,0)=−1/3, which follows from Eq. (2.5) by a short calcu-
lation, the first recurrence relation implies that η(0,3j ) = η(3j ,0) = −1/3 for all
integer j ≥ 0. Consequently, the coefficients cannot vanish at infinity. Due to the
linearity of the recursion relations, the Riemann–Lebesgue lemma implies [6] that
μ cannot have an absolutely continuous component (relative to Lebesgue measure).
The measure μ, and hence γ̂ as well, must thus be purely singular continuous.

2.4 Riesz Product Representation

Although the determination of the spectral type of γ̂ is based on an abstract ar-
gument, the recursion relations (2.5) hold the key to an explicit, iterative cal-
culation of μ (and hence γ̂ ). One defines the distribution function F(x, y) :=


