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Preface

The 1st International Symposium on Computational Sciences (ISCS2011) took
place from April 18 to April 21, 2011 in Shanghai, China. The scientific program
of this symposium included many topics related to the methodological development
and application of quantum simulations in biology and in the material sciences. The
program consisted of plenary and regular presentations and included the following
four main themes:

• Recent development of quantum mechanical methods,
• Simulations of biological systems,
• New techniques in material sciences, and
• New techniques in drug design and discovery.

In addition, a workshop on the theory, code and application of DFTB+ method
was held on April 21, 2011.

This volume comprises ten chapters written by the selected presenters. These
contributions cover three challenging areas in the field of computational sciences:
(i) the development and utilization of quantum mechanical methods for improving
the accuracy of the system, (ii) the application of computational simulation tech-
niques for investigating the time-scale involved in the processes, and (iii) the gener-
ation of more rigorous molecular force fields to solve the problems of systems with
significantly large sizes. This book aims to assemble overviews of recent develop-
ments as well as some applications of all these three computational techniques. Main
focuses of this volume are the methodology and applications of the density func-
tional theory (DFT) method in material sciences and the principles and applications
of the combined quantum mechanical molecular mechanical (QM/MM) approach
for the biological systems.

One of the key components in DFT theory is the exchange-correlation function-
als. Their application in material sciences was reviewed and analyzed by Professor
Pietro Cortona in the first chapter. On the other hand, the time-dependent (TD) ap-
proach was generally used to calculate the electronic excitations within the DFT
frame. In Chap. 2, Professor Thomas Niehaus presents the implementation of the
TD algorithm into DFTB+ method to simulate the quantum transportation process
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vi Preface

between the metal leads. For the application of the DFT method in large systems
such as nanoparticles, Professor Rui-Qin Zhang et al. (Chap. 3) used the DFTB+
method to investigate the optical properties of Silicon quantum dots (SQDs) for
biological probes and sensors, and Professor Stephan Irle et al. described some im-
portant QM/MM simulations on the nucleation process of the carbon nanotubes in
Chap. 4. In Chap. 5, Professor Zhenyu Li presented how to determine structures and
properties of new material such as graphene oxide from a theoretical perspective.

The biological section was firstly highlighted in Chap. 6 by Professor Jeffrey
Reimers who describes the recent development on the refinement of X-ray struc-
tures of biological system using DFT method. It is followed by Professor Thomas
Simonson who in Chap. 7 outlined the current methods available for protein design
and engineering and presented a recent application of his design technique for an im-
portant family of enzymes. It evokes some possibility of quantum mechanical meth-
ods for protein engineering and drug design. The later was discussed by Professor
Ying Xue who in Chap. 8 presented their recent works on the ligand-based design
of inhibitors of factor Xa using supported vector machine (SVP) method. The DFT
method, in the frame of combined QM/MM methodology, has been widely used to
quantitatively understand the mechanism of biological processes. In Chap. 9 Pro-
fessor Dingguo Xu has reviewed some principles and applications of the QM/MM
method for the enzyme catalytic mechanism of several biological systems. Finally in
Chap. 10, Professor Bo Durbeej brought the application of this method to the excited
states by presenting some recent studies in the photochemistry of phytochromes.

We hope that this consolidated volume will give its readers some insights into
the recent progresses made in the field of quantum simulations for material and
biological systems.

We gratefully acknowledge the financial support received from some industrial
sponsors, including SYN|thesis Med Chem (Shanghai), and Qubist Molecular De-
sign (Australia) as well as SRD Biosciences Co Ltd (Shanghai). We would also
like to thank the Professors Stephan Irle (University Nagoya, Japan), Sanhuang Ke
(Tongji University, China) and Dr Balint Aradi (University of Bremen, Germany)
for organizing the DFTB+ workshop and Jenny Zeng from SRD Biosciences Co
Ltd (Shanghai) for preparing and managing the conference. Finally, we would like
to express our sincere thanks to all the participants of ISCS2011 for their support
and to all the authors who have contributed with their excellent papers to the real-
ization of this monograph.
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Rui-Qin Zhang
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College of Chemistry, Sichuan University and
SRD Biosciences Co Ltd (Shanghai), P.R. China

Department of Physics and Material Sciences
City University of Hong Kong, Hong Kong, P.R. China

Monash Institute of Pharmaceutical Sciences
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Chapter 1
Towards a Greater Accuracy in DFT
Calculations: From GGA to Hybrid Functionals

Jessica Hermet, Carlo Adamo, and Pietro Cortona

1.1 Introduction

Most electronic structure calculations are performed in the framework of the
density-functional theory (DFT) [1–3]. The need to take into account the electronic
correlation and the increasing interest for very large systems, are the main reasons
for that. Actually, DFT calculations are fast and sufficiently accurate for many ap-
plications. The electron correlation effects are taken into account by means of the
correlation energy functional. Strictly speaking, this functional is the only quantity,
which requires some approximations. The exchange interaction can be accounted
for in an exact manner, but the experience has shown that it is easier to obtain
good results by constructing approximations of the exchange-correlation energy
than treating the exchange exactly and the correlation approximately.

There are different kinds of exchange-correlation functionals. The local and
semi-local ones are the most efficient from the computational cost standpoint. They
were the first ones to be used in actual calculations and they give quite accurate
results for a number of properties, such as equilibrium geometries, vibration fre-
quencies, and crystal compressibilities.
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Local functionals are mainly represented by the various parametrization of the
local-density approximation [4–6]. Among the semi-local functionals, two classes
are usually distinguished: generalized-gradient approximations (GGAs) and meta-
GGAs. These classes are characterized by their dependence on the density: GGAs
depends on the density and on its reduced gradient; meta-GGAs contain an addi-
tional dependence on the Laplacian of the density and/or on the kinetic energy den-
sity. Highly popular examples of GGA functionals are the Perdew-Burke-Ernzerhof
(PBE) [7] and the Becke-Lee-Yang-Parr (BLYP) [8, 9] ones, while the functional
proposed by Tao, Perdew, Staroverov, and Scuseria [10] is a member of the meta-
GGA class. A further distinction can be made between parameter-free function-
als (i.e. functionals entirely determined on the basis of theoretical arguments) and
empirical functionals (i.e. functionals containing parameters determined by fitting
some reference datasets). PBE and TPSS are parameter-free functionals, BLYP is
an empirical one.

Although the results obtained for many properties by local or semi-local func-
tionals are satisfactory, in a number of cases these functionals fail or their results
are not sufficiently accurate. This is the case, for example, of the evaluation of the
energy barriers for chemical reactions, which are usually strongly underestimated.
Hybrid functionals were devised in order to bypass these failures. The basic idea
is to combine a local or semi-local density-functional with a fraction of the exact
exchange. After the pioneering paper by Becke [11], many different ways of im-
plementing this idea were devised. The simplest and more intuitive one consists in
taking a linear combination of the Hartree-Fock (HF) exchange with an approximate
exchange density-functional, according to the following formula:

Exc = a0E
HF
x + (1 − a0)E

DFA
x + EDFA

c . (1.1)

In (1.1), EDFA
c is an approximate correlation density-functional and a0 is a param-

eter, which can be determined by fitting some reference datasets or, possibly, by
theoretical considerations. The functionals described by (1.1) are the so-called one-
parameter global hybrids, which are probably best represented by the PBE0 func-
tional [12, 13].

A more sophisticated way of mixing HF and DF exchanges is given by the range-
separation procedure. The Coulomb inter-electron interaction is split in two terms:

1

r
= 1 − g(r)

r
+ g(r)

r
, (1.2)

where g(r) is a function, which vanishes for r = 0 and is equal to 1 for r → ∞.
Usually, g(r) is assumed to be the error function erf (ωr), mainly for computational
convenience. The first term in the right member of (1.2) is the short-range term,
while the second one is the long-range contribution. The idea underlying the range-
separation approach is to use a local or semi-local exchange functional for the short-
range part of the interaction and to treat exactly (i.e. by the HF theory) the long-
range contribution. This gives rise to functionals having the expression:

Exc = EDFA,SR
x (ω) + EHF,LR

x (ω) + EDFA
c . (1.3)
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The parameter ω regulates the range-separation: for ω = 0, Eq. (1.3) is a pure DFA;
for ω = 1, the exchange is the HF one; the intermediate values gradually change the
first functional into the second one.

In order to perform actual calculations by (1.3), explicit expressions of E
DFA,SR
x

are required. Currently, there are two methods of solving this problem. The first
one is due to Iikura et al. [14], and allows one to derive an expression for E

DFA,SR
x

starting from any usual exchange functional. The second one was proposed by Heyd,
Scuseria, and Ernzerhof [15, 16] and can only be applied if an explicit model of the
exchange hole is available.

The ideas underlying global and range-separated hybrids can be combined to give
a third class of functionals: the range-separated global hybrids. Their expression can
be obtained by using a global hybrid instead of a pure density-functional for the
short-range contribution in (1.3) [17]:

Exc = a0E
HF,SR
x (ω) + (1 − a0)E

DFA,SR
x (ω) + EHF,LR

x (ω) + EDFA
c . (1.4)

An even more general expression could be obtained if the HF exchange is replaced
by a global hybrid in the long-range contribution. However, the resulting three-
parameter hybrid would not have the correct asymptotic behavior. For this reason,
we have not considered this latter possibility in our work.

In this chapter, we describe the construction of new hybrid functionals based
on the local and GGA functionals developed in our group [18–20]. All the three
approaches mentioned above will be considered. The results reported in the present
chapter complete those that have been recently published in Ref. [21].

1.2 The Starting Local and GGA Functionals

The hybrids that will be described in this chapter are based on four functionals: one
of them is local, the other three are GGA-like. The local functional is the sum of
the standard Slater exchange with the correlation functional proposed by Ragot and
Cortona [18]. The latter, in its spin-polarized form, is given by:

ERC
c =

∫
A

(
rs(r)

)
C

(
ζ(r)

)
d3r, (1.5)

where A(rs(r)) is the correlation energy per unit volume of unpolarized systems:

A
(
rs(r)

) = 3

4πr3
s

εRC
c

(
rs(r)

)
, (1.6)

and C(ζ(r)) is the Wang and Perdew [22] polarization factor:

C
(
ζ(r)

) =
{

1

2

[(
1 + ζ(r)

) 2
3 + (

1 − ζ(r)
) 2

3
]}3

. (1.7)

The Ragot-Cortona correlation energy per electron εRC
c is given by [18]:

εRC
c = −0.655868 arctan(4.888270 + 3.177037rs) + 0.897889

rs
. (1.8)
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It was obtained by a modified Colle-Salvetti approach. At first, an analytic expres-
sion of the kinetic contribution to the correlation energy per electron was deter-
mined. Then, the total correlation energy was derived by means of the DFT virial
theorem. The value of the only parameter entering in this approach was fixed by
applying the resulting expression to the uniform electron gas (UEG) in the low and
high density limit cases. Thus, in spite of the constants entering in (1.8), the RC
correlation functional is parameter-free.

This local functional, which hereafter will be referred to as S-RC, gives results,
which are considerably better than those of the usual LDA [23, 24]. For example,
the mean absolute error (MAE) for the G2 dataset (atomization energies of 148
molecules) is reduced by a factor of 3 [23].

The GGA functionals were constructed by Tognetti, Cortona, and Adamo (TCA)
by including in (1.5) gradient-dependent contributions. The simplest way of doing
that consists in including in the integral a third term depending only on the reduced
density gradient s [19]:

ETCA
c =

∫
A

(
rs(r)

)
B

(
s(r)

)
C

(
ζ(r)

)
d3r, (1.9)

where the reduced density gradient is defined by:

s = ‖∇ρ‖
2(3π2)1/3ρ4/3

. (1.10)

Parameter-free functionals are usually obtained by assuming that they are given
by an analytical expression suggested by some known properties of the exact func-
tional and by determining the parameters entering in such an expression by some
kind of theoretical considerations. In the present case, as (1.9) is an extension of
(1.5), it is natural to require that B(s) → 1 when s → 0. Furthermore, it is known
that the correlation energy vanishes when the reduced gradient becomes very large.
A very simple expression of B(s) satisfying the two conditions:

B(0) = 1, lim
s→∞B(s) = 0, (1.11)

is the following:

B
(
s(r)

) = 1

1 + σs(r)α
. (1.12)

The two parameters σ and α were determined [19] by a mean gradient analysis,
without fitting any dataset. The resulting values are σ = 1.43 and α = 2.30.

The TCA correlation was combined with the PBE exchange (giving a functional
which will be referred to PBE-TCA in the following) and tested on a variety of
atomic and molecular properties [19, 25–29]. The results were better than those of
the PBE-PBE functional and, in some cases (e.g. for hydrogen bonds) they were as
accurate as those of a hybrid functional such as PBE0 [19, 29].

Further improvements can be expected if the functional is required to have some
additional properties of the exact functional. For example, the one given in (1.9), as
most GGA functionals, does not vanish for one-electron systems. It is possible to
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construct a GGA functional having this property by including a forth factor in the
integral in Eq. (1.9) [20]:

ERevTCA
c =

∫
A(rs)B(s)C(ζ )

[
1 − D(rs, s, ζ )

]
d3r. (1.13)

Once more, this new functional is an extension of the previous ones. Thus, it is nat-
ural to require that, under given conditions, it reduces to the RC and TCA ones. In
particular, in the homogeneous case, it should recover the RC functional. This is the
case if D(rs,0, ζ ) = 0. Furthermore, the condition D(rs, s,0) = 0 makes (1.9) and
(1.13) identical for non spin-polarized systems. A third condition, −∞ < D ≤ 1,
warrants that the correlation energy is negative and equal to zero when the reduced
gradient tends to infinity. Finally, a correlation energy almost equal to zero for one-
electron systems can be obtained by requiring that D(rs, s, ζ ) = 1 for all the hy-
drogenoïd atoms, i.e. when:

s(r)
rs(r)

= aZ, with a =
(

4

9π

) 1
3

. (1.14)

The four conditions mentioned above can be satisfied by choosing:

D(rs, s, ζ ) = ζ 4
{

1 −
[

sinc

(
πs

ars

)]2}
. (1.15)

The RevTCA correlation, combined with the PBE exchange, gives a functional
which will be referred to as PBE-RevTCA. The results given by this functional are
not satisfactory: the MAE in the atomization energies of the G2 dataset is greater
than the PBE-PBE one (20.4 and 17.0 kcal/mol, respectively), and much greater
than the PBE-TCA MAE, which amounts to only 9.0 kcal/mol.

The results obtained by the RevTCA correlation can be improved by choosing
another exchange functional or modifying the PBE one. The PBE exchange is given
by:

EPBE
x =

∫
eUEG
x

(
rs(r)

)
F PBE

x

(
s(r)

)
d3r, (1.16)

where

F PBE
x (s) = 1 + κ − κ

1 + μ
κ
s2

. (1.17)

F PBE
x contains two parameters, which were determined by requiring that the LDA

linear response is recovered (μ), and the local Lieb-Oxford condition [30] is verified
everywhere (κ). As it was pointed out by Zhang and Yang [31], the latter is a too
strong condition, because the original Lieb-Oxford relation is an integral one. Zhang
and Yang determined the value of κ by fitting a set of atomization energies. Tognetti
et al. preferred to choose κ so that the local Lieb-Oxford condition, as improved
by Chan and Handy [32], is verified just in the so-called physical interval, i.e. for
s ∈ [0–3]. In such a way they found κ = 1.227, a value quite different from the
original PBE one (κ = 0.804).
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The modified PBE exchange (ModPBE), obtained assuming κ = 1.227 in (1.17),
was combined with the RevTCA correlation. The resulting ModPBE-RevTCA func-
tional gave excellent results for properties such as atomization energies and barrier
heights for chemical reactions. For example, the MAE in the atomization energies of
the G2 dataset amounts to only 5.9 kcal/mol, a value almost 3 times smaller than the
PBE-PBE one, and quite close to the PBE0 MAE (5.0 kcal/mol). However, the tests
of this functional showed also some failures: for example, the PBE-TCA description
of the hydrogen bonds is fairly more accurate.

1.3 Technical Details

All the calculations were performed self-consistently with a locally modified ver-
sion of the Gaussian-03 code [33], using the 6-311 + G(3df,2p) basis set. We have
optimized the a0 and/or ω values by evaluating the performances of the functionals
for several properties, including atomization energies, reaction barrier heights, and
binding energies of noncovalently bound systems.

For atomization energies, we used the standard reference set G2-148 compiled
by Curtiss et al. [34], listing experimental data of 148 molecules, compounded of
first- and second-row elements.

A benchmark set of barrier heights of hydrogen transfer, heavy-atom transfer
(i.e. transfer of atoms other than H), nucleophilic substitution, unimolecular and
association reactions, was recently assembled by Truhlar and coworkers [35, 36]. It
consists of forward and reverse barrier heights for 12 reactions and will be referred
to as DBH24. The best estimates of the barrier heights, as well as the geometries
of all the species in this set, optimized with a correlated wave function method, are
available in the supporting information of Ref. [36].

To complete the test panel, noncovalent interactions of 31 complexes were con-
sidered. These complexes were retained by Zhao and Truhlar for their NCB31
dataset [37, 38], and are representative of systems characterized by hydrogen bonds,
charge transfer, dipole interaction, weak interaction, and π–π stacking. All geome-
tries and best estimates for the binding energies, calculated by the Weizmann (W1)
theory, are available in the Truhlar group website.

1.4 Hybrid Functionals

We start our discussion of the hybrid functionals with the global hybrids. The atom-
ization energies, barrier heights, and noncovalent binding energies for the systems
belonging to the G2, DBH24, and NCB31 datasets have been calculated in function
of a0. The resulting MAEs are reported in Figs. 1.1, 1.2, and 1.3.

Considering at first the barrier heights (Fig. 1.1), it is seen that the four function-
als have a quite similar behavior. All the curves have a pronounced minimum for
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Fig. 1.1 MAEs in the barrier
heights of the DBH24 dataset
(in kcal/mol) of the global
hybrids based on the S-RC,
PBE-TCA, PBE-RevTCA,
and ModPBE-RevTCA
functionals. The results are
given in function of the
mixing parameter a0. Full
line: S-RC. Long-dashed line:
PBE-TCA. Dotted line:
PBE-RevTCA. Short-dashed
line: ModPBE-RevTCA

Fig. 1.2 MAEs in the
atomization energies of the
G2 dataset (in kcal/mol) of
the global hybrids based on
the S-RC, PBE-TCA,
PBE-RevTCA, and
ModPBE-RevTCA
functionals. The results are
given in function of the
mixing parameter a0. Full
line: S-RC. Long-dashed line:
PBE-TCA. Dotted line:
PBE-RevTCA. Short-dashed
line: ModPBE-RevTCA

a0 values within the interval [0.3–0.5], the corresponding MAEs being between 1.2
and 2.1 kcal/mol.

The results for the atomization energies, reported in Fig. 1.2, have a quite differ-
ent trend. Two functionals, PBE-TCA and ModPBE-RevTCA take only a modest
advantage from the hybridization process. On the contrary, the PBE-RevTCA MAE
is considerably reduced and takes a minimum value around a0 = 1/3. The S-RC
curve also presents a pronounced minimum near to a0 = 0.2, but the corresponding
MAE (16.1 kcal/mol) is too large for a hybrid functional, considering the additional
computational cost due to the HF contribution.

Figure 1.3, where the MAEs in noncovalent binding energies are reported, dis-
plays still different features. Quite surprisingly, the best results are the S-RC ones:
for a0 = 0.6 the MAE is only 0.44 kcal/mol. PBE-TCA and PBE-RevTCA are the
same approximation for these closed-shell systems. Starting from a0 = 0.3, their
MAE remains approximately constant, taking values close to 0.7 kcal/mol. Finally,
the ModPBE exchange is not adequate for weak interacting systems: the best results
are obtained when it is completely replaced by the HF exchange, i.e. for a0 = 1.
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Fig. 1.3 MAEs in the
noncovalent binding energies
of the NCB31 dataset (in
kcal/mol) of the global
hybrids based on the S-RC,
PBE-TCA, PBE-RevTCA,
and ModPBE-RevTCA
functionals. The results are
given in function of the
mixing parameter a0. Full
line: S-RC. Long-dashed line:
PBE-TCA and
PBE-RevTCA. Short-dashed
line: ModPBE-RevTCA

The comparison of the three figures makes evident the main obstacle one meets
in constructing hybrid functionals: it is difficult to find a parameter value giving
good results for all the properties. In the present case, only the hybrid based on
PBE-RevTCA is optimized simultaneously for the three datasets by a value of a0
close to 0.4. In the other cases, one must choose a compromise value of a0 or the
property to be optimized. The parameter values that we consider the best for each
functional are reported in Table 1.1 as well as the corresponding MAEs we have
found for the three reference datasets.

The discussion of the range-separated hybrids is similar. The four functionals
have a similar behavior for the barriers heights, their MAEs having a deep minimum
(around 3.5 kcal/mol) for ω values in the interval [0.3–0.5] (Fig. 1.4).

This situation changes drastically when one considers the atomization energies
(Fig. 1.5). The S-RC hybrid has a minimum MAE for ω close to 0.2 but, as in
the case of the global hybrid, the corresponding MAE is too high. Small values
of ω give rise to increasing errors of the three GGA-based hybrids. However, the
errors decrease for larger ω values and a minimum is found around ω = 0.5 for
PBE-TCA and close to ω = 0.8 for the other two hybrids. In the case of ModPBE-
RevTCA, however, the minimum MAE is found for ω = 0, i.e. this functional takes
no advantage from the hybridization according to the range-separation procedure.

Table 1.1 MAEs (in kcal/mol) in atomization energies, barrier heights, and noncovalent binding
energies of the global hybrids based on various local or semi-local functionals. The value of the
mixing parameter a0 for each case is also reported. The MAEs of the original local or semi-local
functionals are given in parenthesis

S-RC PBE-TCA PBE-RevTCA ModPBE-RevTCA

a0 0.2 0.1 0.4 0.2

G2 16.1 (26.2) 8.4 (9.0) 8.6 (20.7) 5.9 (5.9)

DBH24 6.3 (11.8) 5.6 (7.6) 2.1 (8.2) 3.6 (6.6)

NCB31 2.0 (3.1) 1.0 (1.3) 0.7 (1.3) 1.6 (2.0)
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Fig. 1.4 MAEs in the barrier
heights of the DBH24 dataset
(in kcal/mol) of the
range-separated hybrids
based on the S-RC,
PBE-TCA, PBE-RevTCA,
and ModPBE-RevTCA
functionals. The results are
given in function of the
range-separation
parameter ω. Full line: S-RC.
Long-dashed line: PBE-TCA.
Dotted line: PBE-RevTCA.
Short-dashed line:
ModPBE-RevTCA

Fig. 1.5 MAEs in the
atomization energies of the
G2 dataset (in kcal/mol) of
the range-separated hybrids
based on the S-RC,
PBE-TCA, PBE-RevTCA,
and ModPBE-RevTCA
functionals. The results are
given in function of the
range-separation
parameter ω. Full line: S-RC.
Long-dashed line: PBE-TCA.
Dotted line: PBE-RevTCA.
Short-dashed line:
ModPBE-RevTCA

The MAEs in the noncovalent binding energies are reported in Fig. 1.6. It appears
that, for ω > 0.5 the DFT exchange have no longer a role: the three GGA-based
hybrids, which share the same correlation functional for closed-shells systems, give
practically the same results. All the functionals have a minimum MAE for ω values
not far from those which minimize the errors for the DBH24 dataset.

As in the case of the global hybrids, the final ω values for the various functionals
are determined by the need of finding a compromise between the value which op-
timize the barriers heights and the noncovalent binding energies on one hand, and
the atomization energies on the other hand. Once more, only one functional (the
one based on PBE-TCA, in the present case) is optimized by approximately the
same value of ω for the three dataset. In Table 1.2, the ω values we have chosen are
reported, as well as the resulting MAEs of the four functionals for the three datasets.

Finally, we consider the range-separated global hybrids. In this case, there are
two parameters to be optimized, a0 and ω. The results we have obtained by the
hybrid based on the PBE-TCA functional are shown in Figs. 1.7, 1.8, and 1.9. In
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Fig. 1.6 MAEs in the
noncovalent binding energies
of the NCB31 dataset (in
kcal/mol) of the
range-separated hybrids
based on the S-RC,
PBE-TCA, PBE-RevTCA,
and ModPBE-RevTCA
functionals. The results are
given in function of the
range-separation
parameter ω. Full line: S-RC.
Long-dashed line: PBE-TCA
and PBE-RevTCA.
Short-dashed line:
ModPBE-RevTCA

these figures, the MAE is plotted in function of ω for various values of the mixing
parameter a0.

Considering, at first, the atomization energies (Fig. 1.7), it can be seen that the
functional changes its behavior in the interval [0–0.4] with the increase of the
a0 value. The maximum displayed by the pure range-separated functional curve
(a0 = 0) becomes progressively less pronounced. It is replaced by a flat region for
a0 = 0.3 and by a minimum for greater values of a0. For a0 = 0.2 and a0 = 0.25,
the curves present two minima. The one at smaller ω value corresponds to a smaller
MAE, but the second one is more interesting when the other datasets are considered.

The MAEs in barrier heights are reported in Fig. 1.8. The minimum error is
obtained by the global hybrid with a0 = 0.4. However, the MAE in atomization en-
ergies of such functional is too large. Much more interesting are the results obtained
with a0 = 0.2 or a0 = 0.25, which display a minimum simultaneously for the at-
omization energies and the barrier heights. In particular, the range-separated global
hybrid with a0 = 0.25 and ω = 0.3 is the one which gives the best accuracy. This
conclusion is confirmed by the results for the noncovalent binding energies, reported
in Fig. 1.9. The MAEs of this hybrid, i.e. the one with a0 = 0.25 and ω = 0.3, are
5.9, 2.5, and 0.6 kcal/mol for the G2, DBH24, and NCB31 datasets, respectively.

Table 1.2 MAEs (in kcal/mol) in atomization energies, barrier heights, and noncovalent binding
energies of the range-separated hybrids based on various local or semi-local functionals. The value
of the range-separation parameter ω for each case is also reported. The MAEs of the original local
or semi-local functionals are given in parenthesis

S-RC PBE-TCA PBE-RevTCA ModPBE-RevTCA

ω 0.3 0.5 0.7 0.0

G2 29.7 (26.2) 6.8 (9.0) 13.7 (20.7) 5.9

DBH24 3.6 (11.8) 3.4 (7.6) 4.9 (8.2) 6.6

NCB31 0.8 (3.1) 0.6 (1.3) 0.8 (1.3) 2.0


