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Preface

Image registration is an emerging topic in image processing with many applications
in medical imaging, picture and movie processing. The classical problem of image
registration is concerned with finding an appropriate transformation between two
data sets. This fuzzy definition of registration requires a mathematical modeling and
in particular a mathematical specification of the terms appropriate transformations
and correlation between data sets. Depending on the type of application, typically
Euler, rigid, plastic, elastic deformations are considered. The variety of similarity
measures ranges from a simple Lp distance between the pixel values of the data to
mutual information or entropy distances.

This goal of this book is to highlight by some experts in industry and medicine
relevant and emerging image registration applications and to show new emerging
mathematical technologies in these areas.

Currently, many registration application are solved based on variational princi-
ple requiring sophisticated analysis, such as calculus of variations and the theory
of partial differential equations, to name but a few. Due to the numerical complex-
ity of registration problems efficient numerical realization are required. Concepts
like multi-level solver for partial differential equations, non-convex optimization,
and so on play an important role. Mathematical and numerical issues in the area of
registration are discussed by some of the experts in this volume.

Moreover, the importance of registration for industry and medical imaging is
discussed from a medical doctor and from a manufacturer point of view.

We would like to thank Stephanie Schimkowitsch for a marvelous job in type-
setting this manuscript. Moreover, we would like to thank Prof. Vincenzo Capasso
for the continuous encouragement and support of this book and I would like to ex-
press my thanks to Ute McCrory (Springer) for her patience during the preparation
of the manuscript.

The work of myself is supported by the FWF, Austria Science Foundation,
Projects Y-123INF, FSP 9203-N12 and FSP 9207-N12. Without the support of the
FWF for my research this volume would not be possible.

June, 2005 Otmar Scherzer (Innsbruck)
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52425 Jülich, Germany
hoemke@am.uni-duesseldorf.de

Kristian Witsch
Heinrich-Heine University of
Düsseldorf
Lehrstuhl für Angewandte Mathematik
Mathematisches Institut
Universitätsstraße 1
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Part I

Numerical Methods



A Generalized Image Registration Framework using
Incomplete Image Information – with Applications to
Lesion Mapping

Stefan Henn1, Lars Hömke2, and Kristian Witsch3

1 Lehrstuhl für Mathematische Optimierung, Mathematisches Institut, Heinrich-Heine
Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
henn@am.uni-duesseldorf.de

2 Institut für Medizin, Forschungszentrum Jülich GmbH,
D-52425 Jülich, Germany. hoemke@am.uni-duesseldorf.de

3 Lehrstuhl für Angewandte Mathematik, Mathematisches Institut, Heinrich-Heine
Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
witsch@am.uni-duesseldorf.de

Abstract This paper presents a novel variational approach to obtain a d-dimensional
displacement field u = (u1, · · · , ud)t, which matches two images with incomplete
information. A suitable energy, which effectively measures the similarity between
the images is proposed. An algorithm, which efficiently finds the displacement field
by minimizing the associated energy is presented. In order to compensate the ab-
sence of image information, the approach is based on an energy minimizing inter-
polation of the displacement field into the holes of missing image data. This inter-
polation is computed via a gradient descent flow with respect to an auxiliary energy
norm. This incorporates smoothness constraints into the displacement field. Appli-
cations of the presented technique include the registration of damaged histological
sections and registration of brain lesions to a reference atlas. We conclude the paper
by a number of examples of these applications.

Keywords image registration, inpainting, functional minimization, finite difference
discretization, regularization, multi-scale

1 Introduction.

Deformable image registration of brain images has been an active topic of research
in recent years. Driven by ever more powerful computers, image registration algo-
rithms have become important tools, e.g. in

– guidance of surgery,
– diagnostics,
– quantitative analysis of brain structures (interhemispheric, interareal and in-

terindividual),
– ontogenetic differences between cortical areas,
– interindividual brain studies.
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The need for registration in interindividual brain studies arises from the fact
that the human brain exhibits a high interindividual variability. While the topology
is stable on the level of primary structures, not only the general shape, but also
the spatial localization of brain structures varies considerably across brains. That
renders a direct comparison impossible. Hence, brains have to be registered to a
common “reference space”, i.e. they are registered to a reference brain. Often there
are also, so-called maps, that reside in the same reference space. In so called brain
atlases there are additional maps that contain different kinds of information about
the reference brain, such as labeled cortical regions. Once an individual brain has
been registered to the reference brain the maps can be transferred to the registered
brain. It is not only that obtaining the information from the individual brain itself
is often more intricate than registering it to a reference, in some cases it is also
impossible. For instance, the microstructure of the brain cannot be analyzed in vivo,
since the resolution of in vivo imaging methods, such as MRI and PET, is too low.
Registration can also be a means of creating such maps, by transferring information
from different brains into a reference space.

In the last decade computational algorithms have been developed in order to map
two images, i.e. to determine a “best fit” between them. Although these techniques
have been applied very successfully for both the uni- and the multi-modal case (e.g.
see [1, 2, 7, 8, 10, 11, 13, 19, 21, 22, 25]) these techniques may be less appropriate
for studies using brain-damaged subjects, since there is no compensation for the
structural distortion introduced by a lesion (e.g. a tumor, ventricular enlargement,
large regions of atypical pixel intensity values, etc.).

Generally the computed solution cannot be trusted in the area of a lesion. The
magnitude of the effect on the solution depends on the character of the registration
scheme employed. It is not only that these effects are undesirable, but also that in
some cases one is especially interested in where the lesion would be in the other
image. If, for instance, we want to know which function is usually performed by the
damaged area, we could register the lesioned brain to an atlas and map the lesion to
functional data within the reference space.

In more general terms the problem can be phrased as follows. Given are two
images and a domainG including a segmentation of the lesions. The aim of the pro-
posed image registration algorithm is to find a “smooth” displacement field, which

– minimizes a given similarity functional and
– conserve the lesion in the transformed template image.

There have been approaches to register lesions manually[12]. In this paper we
present a novel automatically image registration approach for human brain vol-
umes with structural distortions (e.g a lesion). The main idea is to define a suit-
able matching energy, which effectively measures the similarity between the im-
ages. Since the minimization solely the matching energy is an ill-posed problem
we minimize the energy by a gradient descent flow with respect to a regularity en-
ergy borrowed from linear elasticity theory. The regularization energy incorporates
smoothness constraints into the displacement field during the iteration.
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The presented approach can be seen as the well known “image inpainting ap-
proach” (e.g. see [3, 5, 6]) for the unknown displacement field u. In inpainting
missing or damaged parts of an image are restored using information from the sur-
rounding area. Applications include the restoration of damaged photographs and
movies or the removal of selected objects.

The analogy to image inpainting is given as follows: both approaches

1. consider a data model restricted on a domain Ω \ G, where data is missing on
G,

2. use a regularity energy defined on Ω,
3. determine a solution defined on Ω.

Inpainting proposed appr.
Input: I|Ω\G T |Ω\G1 ,R|Ω\G2

Data model: restricted Ω \G restricted Ω \ (G1 ∪G2)
Regularity energy: defined on Ω defined on Ω
Output: entire image I|Ω entire displacement field u|Ω

The paper is organized as follows. In section 2 we describe an abstract mathematical
framework to handle a variety of distance measures so-called matching energies. In
the next section we present a novel variational approach, which matches two images
with absent information on a part of the image-domain. The aim of the approach is to
obtain a d-dimensional displacement field defined on Ω which preserves the lesion
in the transformed images.

For this reason a suitable matching energy, which effectively measures the sim-
ilarity between the images is proposed. Even when the images contain complete
information, the sole minimization of the matching energy is an ill-posed problem.
Thus, we add an auxiliary Lagrange term, given by an energy norm, which incorpo-
rates smoothness constraints into the displacement field.

In order to present a general description of the approach we use a general frame-
work up to this point. In section 4 we present the numerical description, with a
particular choice of the matching energy as well as for the energy norm for the dis-
placement field. We discuss the discretization of the problem and the underlying
numerical scheme to solve the resulting subproblems. In section 5 we present two-
and three-dimensional results, where brain data is used. For the two-dimensional
example we use a digitized histological section. In the three-dimensional case the
approach is applied to lesioned MR volume data that is registered to a reference
brain.

2 Abstract Framework.

Given are two images, a reference R and a template T using the same or differ-
ent imaging modalities. We assume that in continuous variables the images can be
represented by compactly supported functions
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T,R : Ω ⊂ R
d → R.

Usually, these images are two- or three-dimensional. This means, the map associates
with each pixel (picture element)

x = (x1, · · · , xd)t

on the image domain Ω its intensities T (x) and R(x). For the purpose of numerical
computationΩ will simply be the d-dimensional unit square [0, 1]d. We assume that
T is distorted by an invertible deformation φ−1. We search for a transformation

φ(u)(·) : R
d → R

d, φ(u)(x) : x �→ (x1 − u1(x), · · · , xd − ud(x))t

that depends on the unknown displacements

u : R
d → R

d, u : x �→ u(x) := (u1(x), · · · , ud(x))t.

The goal of image registration is to determine u(x) in such a way that the trans-
formed template T ◦φ(u(x)) matches the referenceR. The image registration prob-
lem can be identified with a minimization problem in the following manner:

Problem 1. IMAGE REGISTRATION PROBLEM
For an energy functional

D[R, T,Ω; u(x)] :=
∫

Ω

Φ(R, T, u) dx : R
d → R,

which measures the disparity between T ◦ φ(u(x)) and R(x) on the image do-
main Ω, the image registration problem is given by the following minimization
problem:

Find u(x), such that D[R, T,Ω; u(x)] is minimal. (1)

Thus we ask for solutions of the problem to minimize D[R, T,Ω; u(x)] over

Ld
2(Ω) := L2(Ω) × · · · × L2(Ω)︸ ︷︷ ︸

d−times

.

A minimizer u(x) of (1) is characterized by the necessary condition

grad
(
D[R, T, u(x)]

)
= 0,

where grad
(
D[R, T, u(x)]

)
∈ Ld

2(Ω). Indeed, we require
〈
grad(D[R, T, u(x)]), ϕ

〉
= 0 ∀ϕ ∈ Ld

2(Ω).

In the following we denote the so-called external forces grad
(
D[R, T, u(x)]

)
just

by f(u(x)). In the image registration process the task of the external forces is to
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bring similar regions of the images into correspondence. For instance, in the situa-
tion that the intensities of the given images are comparable, a common approach is
to minimize their squared difference (see, e.g. [1, 2, 7, 13, 21]) for all x ∈ Ω, i.e. to
minimize

DSD[R, T ; u(x)] =
∫

Ω

(
T (x1−u1(x), · · · , xd−ud(x))−R(x1, · · · , xd)

)2

dΩ.

(2)
It is used, for example, in the case that the images are recorded with the same imag-
ing machinery, the so-called mono-modal image registration. The necessary condi-
tion for a minimizer u∗(x) of (2) is given by:

fSD(u(x)) = −grad
(
T (x1 − u1(x), · · · , xd − ud(x))

)
·(

T (x1 − u1(x), · · · , xd − ud(x)) −R(x1, · · · , xd)
)

see, e.g. [20].
Another kind of problem is the so-called multimodality image matching (see, e.g.
[9, 22, 23, 26, 29]). Here, the distance between the images is measured by mutual
information or entropy based functionals.

Recently, an approach based on the definition of a matching energy, which mea-
sures the local morphological “defect” between the images, has been presented [11].

Unfortunately, the image registration problem (1) is not well posed: Solutions, if
they exist, are in general neither unique nor stable. Different solutions can give very
similar outputs, and small data errors can yield very different solutions. Therefore,
the approximations u of (1) may be useless. One has to define better approximate
solutions. Since the problem is ill-posed, we have to apply a regularizing technique
to solve the problem in a stable way. Many regularization methods are discussed
in the literature and the choice of the regularization term depends crucially on the
underlying application.

3 Gradient Descent Flow Using Incomplete Image Information.

The aim of this section is to determine a displacement field u on domains where the
image information is unavailable.

3.1 Extension of the Similarity Functional

Let Ω denote the complete image domain for the image registration problem
presented in the previous section. We assume that there are domains Ui ⊂ Ω,
1 ≤ i ≤ s, where image data in the template image T is missing respectively
domains Vj ⊂ Ω, 1 ≤ j ≤ t, where image data in the reference image R is missing.
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Then the image registration problem is given by:

Problem 2. IMAGE REGISTRATION WITH INCOMPLETE INFORMATION
Let G := GU ∪GV and Ω′ = Ω \G an open domain, with

GU =
{
x ∈ R

d
∣∣ x ∈ Ω ∩ (U1 ∪ · · · ∪ Us)

}

and

GV =
{
x ∈ R

d
∣∣ x ∈ Ω ∩ (V1 ∪ · · · ∪ Vt)

}
.

Then the complete image registration problem for images with incomplete in-
formation is given by the following minimization problem:

Find u(x), such that D[R, T,Ω′; u] is minimal. (3)

In order to solve the problem we define an extension of the functional D as follows.

Definition 1. The zero extension Dε[R, T,Ω′; u] of the similarity function is de-
fined by

Dε[R, T,Ω′; u] :=
∫

Ω′
Φε(R, T, u) dx,

with

Φε(R, T, u) :=
{
Φε(R, T, u) if x ∈ Ω′,

0 if x ∈ G.

With this definition we can restate problem 2.

Problem 3. MODIFIED IMAGE REGISTRATION PROBLEM
By using the zero extension of the similarity function Dε[R, T,Ω; u] the com-
plete image registration problem for images with incomplete information is
given by the following minimization problem:

Find u(x), such that Dε[R, T,Ω; u] is minimal. (4)

We now describe an approach to solve the minimization problem. Because the prob-
lem is nonlinear, we have to use an iterative method. Assume that after k iterations
a current deformation φk = x − u(k)(x) is given, then the domains G and Ω′

k are
changed in the following way

Gk = φk (GU ) ∪GV , Ω′
k = Ω \Gk,

since the displacements only acts on the template image.
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3.2 Extended Iterative Minimization Method

To minimize Dε[R, T,Ω; u] for a given current approximation u(k), we search for
an approximation u(k+1) so that

Dε[R, T,Ω; u(k+1)] < Dε[R, T,Ω; u(k)].

The reduction for the next iterate u(k+1) is given approximately by

Dε[R, T,Ω; u(k+1)] −Dε[R, T,Ω; u(k)] ≈ ∂

∂d(k)
Dε[R, T,Ω; u(k)], (5)

where the Gâtaux-derivative at u(k) in the descend direction

d(k) = u(k+1) − u(k)

is given by
∂

∂d(k)
Dε[R, T,Ω; u(k)] =

〈
fk, d

(k)
〉

L2(Ω)

with

fk := f(u(k)) =
{
grad(Dε[R, T,Ω; u(k)]) if x ∈ Ω′

k,
0 if x ∈ Gk.

By using the negative gradient the nonlinear steepest descent iteration for problem
3 is given by

u(k+1) = u(k) − τkfk, (6)

with
τk = arg min

τ∈R

Dε[R, T,Ω; u(k) − τfk].

Unfortunately, for most real applications the steepest descent iteration (6) is not
suitable to solve the image registration problem. This is at least due to two factors.
First, because of the ill-posedness, this method does not have global convergence
properties. Second, due to noise sensitivity of the ill-posed registration problem,
regularization techniques have to be applied in order to compute meaningful so-
lutions. Hence, to ensure robustness and fast local convergence it is necessary to
incorporate additional information.

3.3 Filling-in by an Unified Regularization Approach

A natural way to alleviate this effects is to find a descend direction subject to an
energy constraint || · ||E smaller than some particular value η, i.e.

arg min
〈
fk, d

(k)
〉

L2(Ω)
, s.t. ||d(k)||2E ≤ η,

where the energy norm || · ||E is defined by

||v||E =
√

〈v, v〉E
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with inner product
〈v, w〉E = 〈Lv,w〉Ld

2(Ω)

and a symmetric positive definite operator L.

Remark 1. In order to guarantee positive definiteness of the operator L in the fol-
lowing, we assume Dirichlet boundary conditions, i.e.

d(k)(x) = 0 for x ∈ ∂Ω and k = 0, 1, 2, · · · .

Other possibilities to guarantee positive definiteness are described in cf. [17].

The method of Lagrange multipliers gives the functional

arg min
d(k)

{〈
fk, d

(k)
〉

L2(Ω)
+ α

〈
Ld(k), d(k)

〉
L2(Ω)

}
, (7)

with some parameter α(η) = α > 0. We have the following result:

Theorem 1. The unique minimizer of (7) is characterized by the following boundary
value problem

αL d(k)(x) = −grad(Dε[R, T,Ω; u(k)]) for x ∈ Ω′
k,

αL d(k)(x) = 0 for x ∈ Gk,
d(k)(x) = 0 for x ∈ ∂Ω.

⎫⎬
⎭ (8)

Proof. Since L is a symmetric positive definite operator, a weak solution of (7) is
given by the variational equation

〈
αLd(k), ϕ

〉
L2(Ω)

= 〈−fk, ϕ〉L2(Ω) (9)

for every ϕ with ϕ = 0 on ∂Ω. Classical solutions fulfill

αL d(k)(x) = −fk for x ∈ Ω,
d(k)(x) = 0 for x ∈ ∂Ω

or equivalent

αL d(k)(x) = −grad(Dε[R, T,Ω; u(k)]) for x ∈ Ω′
k,

αL d(k)(x) = 0 for x ∈ Gk,
d(k)(x) = 0 for x ∈ ∂Ω.

�

We minimize Dε[R, T,Ω; u] by successively determining d(k) = −α−1L−1fk as
solution of (8) and perform the following iteration

u(k+1) = u(k) + d(k) = u(k) − α−1L−1fk for k = 0, 1, . . .
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with an initial guess u(0)(x) = u∗(x) and u(k+1)(x) = 0 for x ∈ ∂Ω. If in each
iteration step the scalar α−1 is chosen to minimize

τk = arg min
α−1∈R

Dε[R, T,Ω; u(k) − α−1L−1fk],

then one obtains the steepest descent method with respect to the energy || · ||2E . If
one restricts the parameter α−1 ∈ [0, 2||d(k)||−1

∞ ], i.e.

τk = arg min
α−1∈[0,2||d(k)||−1

∞ ]
Dε[R, T,Ω; u(k) − α−1L−1fk]

= arg min
α−1∈[0,2]

Dε[R, T,Ω; u(k) − α−1L−1fk||d(k)||−1
∞ ] (10)

one obtains a method known as Landweber iteration with trust-region restriction.
This means that the template image is moved in one iteration step by at most two
pixels. In practice, this seems to be a reasonable compromise between convergence
speed and robustness. We stop the iteration when grad

(
Dε[R, T,Ω; u(k)]

)
≈ 0

and get algorithm 1.

Algorithm 1 Iterative minimization of Dε[R, T,Ω; u]
k = 0; u(0) = 0;
repeat

calculate f(u(k)(x)) on Ω′
k = Ω \ Gk

compute d(k) from (8)
set s(k) = d(k)/||d(k)||∞
compute τk by solving problem (10)
set u(k+1) = u(k) + τk · s(k)

set k = k + 1
compute Gk = φk(GU ) ∪ GV

until ||f(u(k)(x))||2 ≤ eps

Remark 2. In some applications it is useful to determine a descend direction subject
to a semi-norm. Then the operator L is only positive semi-definite and consequently
the operator contains a non-trivial kernel. In this situation one has to consider the
following situations:

1. If fk �∈ (L) then
d̃(k) = L+fk

is the least squares solution of (8).
2. If fk ∈ (L) then all solutions of (8) are given by d(k) = d̃(k) + vλ, where
λ ∈ R

d and v is an arbitrary basis for ker(L).

In the second case the parameter λ is chosen to minimize

Dε[R, T,Ω; u(k+1) − λv]

in each iteration.
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4 Algorithmic Aspects

In this section we will turn to the numerical aspects of the proposed approach. We
present an algorithm for the efficient and robust computation of solutions d(k) of
(8).

4.1 Model

For our specific application we choose

Dε[T,R,Ω;u] :=
1
2

∫
Ω′

(T (x− u(x)) −R(x))2dx (11)

as the energy functional, i.e. the least squared difference. For the regularization term
〈Lu, u〉 we chose the elliptic differential Navier-Lamé operator

Lu := −µ∆u− (µ+ λ)∇(∇u), (12)

with Dirichlet boundary conditions, i.e. u = 0 for x ∈ Γ . The “external force” is
then given by

f(u(x)) =
{
−∇T (x− u(x)) (T (x− u(x)) −R(x)) , x ∈ Ω′

0 , otherwise . (13)

4.2 Discretization

For the discretization of the domain Ω = [0, 1]d ∈ R
d we define a grid

Gd
h :=

{
(x1,i1 , x2,i2 , . . . , xd,id

)| xl,ij
= ij · hl, ij = 0, . . . , nl − 1 j, l = 1, . . . , d

}
,

with hl = 1/(nl − 1). Then the inner points of the discrete domain are

Ωd
h =

{
(x1,i1 , x2,i2 , . . . , xd,id

)| 1 ≤ ij ≤ nj − 2, j = 1, . . . , d
}
,

and the set of discrete boundary points is defined by

∂Ωd
h := Γ d

h =
{
(x1,i1 , x2,i2 , . . . , xd,id

)| ∃j : ij ∈ {0, nj − 1}
}
.

We can also write

Ωd
h = Gd

h ∩Ωd,

∂Ωd
h = Γ d

h = Gd
h ∩ Γ d.

For Gk we have

Gd
h,k := Ωd

h ∩ (Gk ∪ U(Gk)) ,

Ω
′d
h := Ωd

h \Gd
h,k,

where U is a set of points in the neighborhood of Gk which depends on the discrete
approximation of external force f(u(x)). Specifically U(Gk) has to be chosen such
that there exists no x = (x1,i1 , . . . , xd,id

) used in the discrete approximation of
f(u(x)) that is in Ωd

h ∩Gk.
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Fig. 1. Depending on the approximation Gk has to be enlarged by U to avoid that points in
Gk are used in the approximation of f .

Example 1. When only the direct neighbors are involved in the discrete approxima-
tion of f(u(x)), then we have

U :=
{
x| x± ej · h ∈ G, x ∈ Ω′, 1 ≤ j ≤ d

}
.

We shall see that this is exactly the case for the approximation that is introduced in
the following sections.

For x ∈ Ω̄d
h and u(x) we define the following alternative notation :

(x1,i1 , x2,i2 , . . . , xd,id
)t =̂ xi1i2...id

,

u(xi1i2...id
) =̂ ui1i2...id

.

4.3 Approximation

From (12) and (13) we obtain the system of partial differential equations

−µ

⎛
⎝ d∑

j=1

∂2ui

∂x2
j

⎞
⎠− (λ+ µ)

∂

∂xi

⎛
⎝ d∑

j=1

∂uj

∂xj

⎞
⎠ = fi(u), i = 1, . . . , d, (14)

where

fi(u) =
{

(T (x− u(x)) −R(x)) ∂
∂xi
T (x− u(x)) , for x ∈ Ω′d

h

0 , otherwise
. (15)

Higher order terms of the Jacobian J(x−u(x)) have been omitted, i.e. J(x−u(x))
has been replaced by the identity. The partial derivatives are approximated using the
finite differences approximations


