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Preface

Across a range of disciplines, including psychology, sociology, education, political
science and medicine, research and theory target families as central to the well-being
of their members and to the well-being of the communities and larger societies in
which families are embedded. The significance of families for the health of individ-
uals and communities demands scholars’ best efforts to illuminate how family roles,
relationships and dynamics operate and how they influence family members.

This volume is predicated on the idea that advances in research on families will
rely on innovations in design, measurement, data collection and data analysis that
allow researchers to capture the multi-level complexities of family systems. Methods
for studying families are often drawn from research focused on individuals. A theme
throughout this volume is whether and to what extent the same kinds of methods
can be applied across levels of analysis—from the individual, to the dyad, to larger
family groups. In chapters throughout this volume, authors consider whether and
how methods from research focused on individuals can be applied, can be modified,
and are challenged when family relationships and family influences are the focus of
study.

The contributions to Emerging Methods in Family Research are based on pa-
pers presented at the 20th Annual Penn State Symposium on Family Issues held in
October, 2012. This edited volume is the culmination of two days of stimulating
presentations and discussions organized around four topics: (1) strategies for quan-
titative analysis of variation and change in families, (2) approaches to analyzing
families as systems, (3) measuring “the family” and family dynamics, and (4) new
directions in the implementation and evaluation of family-focused social policies
and preventive interventions.

Overview of this Volume

This volume is organized by these four topical areas. In contrast to other volumes in
the decades-long Family Symposium series, our focus on methods meant that many
of these chapters were written by researchers who do not self- identify as family
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vi Preface

scholars, but rather, are known for their methodological expertise. These methodol-
ogists accepted the editors’ invitation to apply their work and ideas to the study of
families. The four sections of this volume each include two or three chapters that
address the topical area in distinct ways, often from different disciplinary perspec-
tives. The last chapter in each section is an integrative discussion by a family scholar
who was charged with distilling the range of ideas, information, and techniques
described in the session’s papers toward providing insights on how novel methods
could be used to advance the work of family scholars. The volume concludes with
an integrative chapter by two young scholars.

Chapters in Part I focus on best methods for capturing variation and change in
family processes and influences on individual family members. Family structure and
processes are dynamic, responsive both to changes in individual family member’s
development, as well as to pressures emanating from outside the family, which are
also continually in flux. Chapters by JayTeachman, Professor of Sociology atWestern
Washington University, by Nilam Ram, Associate Professor of Human Development
at Penn State, and colleagues, and by Si-Miin Chow, Associate Professor of Human
Development at Penn State, and colleagues, focus on different timescales for studying
variation and change, timescales that reflect different kinds of research questions and
require different kinds of analytic methods. In the final chapter in this section, Andrew
Fuligni, Professor of Psychiatry and Behavioral Sciences at UCLA, outlines some of
the contributions to our understanding of family processes and family influences that
can come from sophisticated analyses of variation and change, and he considers how
the benefits of collecting “repeated data” balance against the costs. For researchers
interested in why one might use the models introduced in the three opening chapters,
Fuligni’s application of each model to the case of family sleep patterns conveys the
distinctive insights that can emerge from each approach.

Family scholars have long embraced the metaphor of families as systems, yet
empirical research targeting systems dynamics remains very rare. In Part II, chapters
by Robin Gauthier and James Moody, both sociologists at Duke University, and by
Mark Cummings and co-authors Kathleen Bergman and Kelly Kuznicki, psycholo-
gists at Notre Dame University, focus on methods for characterizing family systems
and capturing their dynamics. In his integrative discussion, Robert Emery, Professor
of Community Psychology at the University of Virginia, reinforces and elaborates
on the important conceptual and theoretical work that must be accomplished if fam-
ily researchers are to make full use of a systems approach, and he offers new ideas
toward this end.

At a general level, measurement is “concerned with what can be observed, the
conditions under which observations are made, and how observations are recorded
for future analysis and consideration” (Amato, Chap. 11, p. 179). In Part III, chap-
ters by Carolyn Tucker Halpern from the Department of Maternal & Child Health
along with Kathleen Mullan Harris from the Department of Sociology and epidemi-
ologist Eric Whitsel, all at University of North Carolina, Chapel Hill, by Joshua
Smyth, Professor of Biobehavioral Health and co-author Kristin Herron from Penn
State University, and by Thomas Weisner, Professor of Psychiatry and Anthropol-
ogy at UCLA, describe distinct approaches to measuring family dynamics and their
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correlates. As with other dimensions of methods considered in this volume, most
family research relies on measurement approaches that were developed to study in-
dividuals, and these chapters include consideration of approaches for and challenges
to moving from the individual to the dyad and group levels of analysis in measuring
family processes and influences. In the concluding chapter, Paul Amato, Professor
of Sociology at Penn State, considers some of the strengths of these approaches
to measurement and provides examples of how each might be applied to address
novel questions about family processes and influences. Amato also reminds us of the
challenges of defining “the family” in determining strategies for its measurement.

Recent national efforts have been directed at promoting the translation of science
to application and practice as well as improving the quality of programs and policy
through a focus on evaluation. Although a stronger emphasis on applying research
in evidence-based programs and policies is welcome, the development, implemen-
tation and evaluation of programs and policies for families face unique challenges.
The chapters in Part IV by Carol Metzler, from the Oregon Research Institute and
colleagues, by Quinn Moore and Robert Wood from Mathematica Policy Research,
and by Linda Collins, Professor of Human Development at Penn State, highlight new
approaches to optimal design, implementation and evaluation of the effects of family
programs and policies and consider some of the challenges that need to be overcome
toward these ends. In the final, integrative chapter of this section, Greg Duncan, from
the School of Education at the University of California Irvine, identifies a number
of “best practices” in family-focused evaluation and policy research.

As is the tradition in the Family Symposium series, the final chapter of the volume
was written by two scholars in the early stages of their careers as family researchers,
Melissa Lippold, from Human Development and Family Studies, and Catherine
McNamee, from the Population Research Institute at Penn State. Their charge was
to bring to bear their distinct disciplinary backgrounds—in human development
and demography, respectively—on the ideas and insights conveyed during the four
sessions of the conference. Lippold and McNamee identify five themes that cut
across chapters in this volume: approaches to defining “family” and capturing its
complexities, assessing change and variation in families, the challenges inherent
is studying families, the importance of keeping in sight the “big picture,” and the
significance and special considerations involved in family research that is aimed at
improving public health. Lippold and McNamee conclude with their thoughts about
opportunities and challenges facing the next generation of family scholars.
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Chapter 1
Latent Growth Curve Models with Random
and Fixed Effects

Jay Teachman

The availability of longitudinal data on families is increasingly common. Data sets
such as the Panel Study of Income Dynamics, the various National Longitudinal
Studies, AddHealth, and Fragile Families allow researchers numerous opportunities
to observe and model family-related processes and outcomes as they evolve over
time. Accordingly, a number of statistical procedures have been developed to model
repeated observations of families and individuals. Two common alternatives are
random-effects models (REM) and fixed-effects models (FEM) (Allison 2005; Bollen
and Brand 2010) Within the general random-effects framework, latent growth curve
models (LGCM) are a useful extension because they allow researchers to explicitly
model the trajectory of change in an outcome (Lyons and Sayer 2005) In this chapter,
using a structural equation modeling (SEM) approach, I demonstrate that LGCMs
can also be estimated within a fixed-effects framework. In addition, I show that
time-constant covariates, which are generally modeled on the inter-subject level in
LGCMs, can be modeled on the intra-subject level. These models are illustrated using
data on marital status, education, and body mass index (BMI) for 1761 men taken
from four waves (1992, 1996, 2000, 2004) of the 1979 National Longitudinal Survey
of Youth (NLSY). Umberson et al. (2009). provide a discussion of the relationship
between BMI, marital status, and other covariates. Finally, I show that LGCMs can
be used to model paired data using information on marital satisfaction gathered from
218 continuously-married couples in the Early Years of Marriage Project (EYMP).

Traditional Random- and Fixed-Effects Models
for Longitudinal Data

In much of the family literature the most common procedure for examining repeated
observations on individuals or other units of observation is a REM or a FEM. Many
statistical packages easily allow estimation of REMs and FEMs. STATA (XTREG)

J. Teachman (�)
Department of Sociology, Western Washington University, Bellingham, WA, USA
e-mail: Jay.Teachman@wwu.edu

S. M. McHale et al. (eds.), Emerging Methods in Family Research, 3
National Symposium on Family Issues 4, DOI 10.1007/978-3-319-01562-0_1,
© Springer International Publishing Switzerland 2014



4 J. Teachman

and SAS (PROC GLM for fixed effects and PROC MIXED for random effects) are
popular options. It is also possible to estimate REMs and FEMs using structural
equation models (Bollen and Brand 2010; Teachman et al. 2001) using programs
such as Mplus, EQS, AMOS, or PROC CALIS in SAS. SEMs allow researchers
to explicitly model or manipulate co-variances, and as I demonstrate, SEMs allow
hybrid models mixing both fixed and random effects, as well as extensions to models
such as LGCMs. Accordingly, in this chapter all models are presented and estimated
as SEMs.

To begin the discussion and fix ideas, consider the following REM:

yit = αt + βyxtXit + βyztZi + βyηtηi + εit (1.1)

yit is the value of the dependent variable for the ith case at time t; αt is an intercept
term at time t; Xit is a vector of time-varying covariates for the ith case at time t; βyxt
is a vector of coefficients indicating the effects of Xit on yit; Zi is a vector of time-
constant covariates for the ith case; βyzt is a vector of coefficients indicating the effects
of Zi on yit; ηi is a scalar indicating all of the latent time-constant factors affecting
yit; βyηt is the coefficients linking the latent factor ηi to yit at time t (here all values of
this vector are set equal to 1.0); and εit is a random disturbance for the ith case at time
t with E(εit) = 0 and E(ε2

it) = σ2
εt . It is assumed that εit is uncorrelated with Xit, Zi,

and ηi, that COV(εit ,εit) = 0 for t �= s, and that ηi is uncorrelated with Xit and Zi. This
is the default REM estimated by most software products in which the effects of the
time-varying variables are constrained to be constant across time, as are the variances
of the error terms. This is also the REM that many, if not most, researchers using
longitudinal data report. The key assumption for the purposes of this chapter is that
ηi is uncorrelated with the included covariates. Accepting this assumption means that
the standard errors of the coefficients are adjusted for clustering but are not adjusted
for unmeasured covariates that may be correlated with both the dependent variable
and the covariates.

A FEM can be written as:

yit = αt + βyxXit + βyηηi + εit (1.2)

The Zi are now dropped from the equation because they are assumed to be included in
the time-constant latent variable ηi. The key assumption here is that the model allows
ηi to be correlated with the Xit. Note that even though one loses the ability to obtain
an estimate of the impact of specific time-constant variables on the outcome, their
effects are still controlled by including ηi in the model. In a FEM, the effects of the
time-varying variables are washed of any effect linked to unmeasured time-constant
factors. Without prior evidence, I suggest that assuming zero covariance between
latent time-constant factors and the included covariates is risky. If a correlation
exists, and it is not modeled, the estimated parameter estimates will be biased, either
upward or downward. The FEM avoids this issue.

If the REM does not include Zi then it is simply a restricted version of the FEM
that constrains the covariances between ηi and Xit to be zero. In other words, the
models are nested and can be compared via a standard likelihood ratio test. If the
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Table 1.1 Results from estimating random- and fixed-effects models for BMI

Random effects Fixed effects

Cohabiting 0.264** 0.280**
Married 0.485** 0.475**
Highest grade completed −0.112** 0.087
T1 intercept 27.847** 25.171**
T2 intercept 28.729** 26.032**
T3 intercept 29.566** 26.855**
T4 intercept 29.894** 27.175**
LR chi-square 682.13 651.58
Df 53 41
RMSEA 0.082 0.092
BIC 286.03 345.16

** p < 0.05

REM includes Zi but the FEM does not, then the models are not nested. On the other
hand, if the REM includes Zi and the FEM also includes Zi (by constraining the
covariance between Zi and ηi to equal zero) the two models are once again nested
(the result is a hybrid REM/FEM). Bollen and Brand (2010) provide an overview of
these points within the context of a general model for panel data.

Results from estimating these two models using the NLSY data on BMI are shown
in Table 1.1. The NLSY data consist of 1761 observations for men in 1992, 1996,
2000, and 2004. Cases with missing data were deleted, as were men with BMI
values greater than 50. Marital status is time-varying and is measured as married,
cohabiting, and other. Highest grade completed is time varying and indicates the
highest year of schooling completed by the respondent. A time-constant indicator
of race/ethnicity measured as Black, Hispanic, and other is included. PROC CALIS
in SAS was used to generate these estimates. The estimates are identical to models
estimated using XTREG in STATA. According to the REM, when compared to men
not in a union, both cohabitors and married men are heavier, and men with more
education have lower values of BMI. The FEM shows similar estimates of the effects
of marital status, but the effect of highest grade completed has changed signs and
is no longer statistically significant, indicating that its effect can be attributed to the
common latent factor. The intercept terms indicate that for both the REM and the
FEM there is a tendency for BMI to increase over time. A variety of fit statistics
are provided for each model: LR chi-square, Root Mean Square of Approximation
(RMSEA), and Bayesian Information Criterion (BIC). Differences between the LR
chi-square values suggest that the FEM is a better choice than the REM (X = 30.55,
12 df). The BIC value for the FEM is much larger than the BIC value for the REM
however, indicating some ambiguity in whether the FEM should be favored. In large
part, this is a common occurrence because FEMs use additional degrees of freedom
(by allowing non-zero covariances between the latent term and the time-varying
covariates), and BIC penalizes models that use more degrees of freedom. Overall,
the fit statistics do not indicate well-fitting models though. In particular, BIC values
should be negative for models that fit the data well.
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Latent Growth Curve Models for Longitudinal Data

The lack of fit for either the REM or FEM in Table 1.1 suggests that another model
specification is in order. I argue that in the case of a variable like BMI a LGCM is
appropriate. LGCMs are appropriate when the outcome variable being considered
follows a trajectory of change across time (i.e., does not randomly shift across time).
A simple LGCM can be expressed as follows (ignoring time-constant variables):

yit = βyxtXit + βyη0tηoi + βyη1tη1i + εit (1.3)

ηoi is a latent factor indicating initial values of BMI with slopes, βyη0t, constrained to
equal 1, and η1i is a second latent factor with slopes, βyη1t, indicating change in BMI
over time. All other terms and assumptions are defined as in Eq. 1.1 with the caveat
that the latent factor is now represented by two terms. Most researchers call ηoi the
intercept (beginning or initial value of the outcome) and η1i the slope of the model
(change across time from the initial value of the outcome). In a LGCM therefore,
there are two latent components rather than one as is the case in a REM. Similar to a
REM, one latent factor (intercept) describes a stable component across time. (Slopes
are constrained to unity.) The second latent factor allows variation from this stable
component over time and can be thought of as representing the rate of change across
time. This is the factor that models structured change across time.

LGCMs (as well as REMs and FEMs) are hierarchical linear models (HLM) in that
there are two levels of variation represented: within-subject and between-subject. The
Xit represent within-subject variation, whereas ηoi and η1i represent between-subject
variation. Because they vary between subjects, both ηoi and η1i can be represented
as functions of other time-constant covariates. This point is demonstrated later in
this chapter. Many applications of REMs and FEMs ignore the fact that variation in
outcomes occurs both within and between respondents.

A graphic representation of this model is shown in Fig. 1.1. Note that as shown this
is a random-effects LGCM because both latent terms are assumed to be independent
of any covariates. Also note that the slopes for the second latent term representing
change in BMI are fixed at 0, 1, 2, and 3 to reflect a linear trajectory of gains
in BMI. (Alternative specifications are possible.) The model shown is known as a
conditional LGCM because the latent terms are estimated conditional on the effects
of marital status and education (and vice versa). If marital status and education were
not included in the model and each BMI included an error term instead, the model
would be an unconditional LGCM. For the purpose of establishing a baseline, I
estimate an unconditional LGCM using the NLSY data on BMI. The resulting value
for ηoi is 26.80 and the resulting value for η1i is 0.693. These values can be thought of
as the average value of the intercept and slope, respectively. That is, if all 1761 cases
were plotted, the average starting value for BMI would be 26.80 and the average
slope indicating gain in BMI over time would be 0.693. Of course, these average
values also have standard errors because they are not fixed across individuals. In this
case, the standard error for the intercept term is 0.099, and the standard error for the
slope term is 0.023. In both cases, a simple t-test indicates that there is statistically
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Fig. 1.1 Simple latent growth curve model with marital status and highest grade of schooling
completed as time-varying covariates

significant variation in both initial value of BMI and rate of change across time
(slope). The model fit statistics for the unconditional model are 182.64/8 for the LR
Chi-square, 0.111 for RMSEA, and 122.85 for BIC.

The fit statistics for the unconditional LGCM are not particularly good and suggest
that the model can be improved. Accordingly, I estimate the conditional LGCM rep-
resented in Fig. 1.1. The model fit statistics for this model are shown in Table 1.2 for
Model A. These values indicate that this model is a better fit to the data. In particular,
RMSEA is much lower (0.045 vs. 0.111), and BIC is now negative (−153.75). The
parameter estimates for this model are shown in Table 1.3. The latent intercept has a
value of 28.044 and the slope estimate is 0.697. Thus, the addition of the time-varying
covariates does not dramatically alter estimates of these basic parameters. Yet, the
fact that Model A fits the data better than an unconditional model indicates that net
of the latent growth factors, marital status and education significantly affect BMI.
Compared to the coefficients for traditional REM shown in Table 1.1, the effects of
being married (0.515) and the effects of education (−0.118) are similar; however,
the effect of cohabitation (0.135) is much smaller and not statistically significant.
This latter result suggests that the effect of cohabitation as estimated in the tradi-
tional REM can be attributed to latent growth in BMI over time. That is, beyond the
tendency for men to become heavier as they age, cohabitation does not appear to be
related to BMI.
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Table 1.2 Model fit statistics for various latent-growth curve models: NLSY data on male BMI

Model LR chi-
square/df

RMSEA BIC

A. LGC REM 242.36/53 0.045 −153.75
B. LGC REM + quadratic 102.77/49 0.025 −263.44
C. LGC FEM 198.58/29 0.058 −18.16
D. LGC FEM + quadratic 61.98/25 0.020 −124.87
E. hybrid LGC + quadratic 83.63/45 0.022 −252.68
F. hybrid LGC + quadratic + mediated

race/ethnicity
87.11/49 0.021 −279.10

G. hybrid LGC + quadratic + direct
race/ethnicity equal slopes

101.02/51 0.024 −280.13

H. hybrid LGC + quadratic + direct
race/ethnicity unequal slopes

72.18/45 0.019 −264.13

I. hybrid LGC + quadratic + direct race/ethnicity
unequal slopes + unequal variances

38.59/42 0.000 −275.30

J. hybrid LGC + quadratic + direct race/ethnicity
unequal slopes + unequal variances + level 1
unequal slopes

30.96/33 0.000 −215.67

K. hybrid LGC + quadratic + mediated
race/ethnicity + unequal variances

53.81/46 0.010 −289.98

Some researchers might stop here after concluding that marriage and education
affect BMI but that cohabitation does not. However, there are important extensions
to Model A. One possible extension is to consider non-linear changes in BMI over
time. There are many ways to allow for non-linear change in the outcome variable
but perhaps the most parsimonious is to model a quadratic rate of change (by adding
a quadratic latent term to Eq. 1.3). In this case, the additional latent construct allows
for a quadratic change in the slope, in which each slope is just the square of the linear
change in slope. (i.e., Each of the paths from the latent quadratic slope construct is
the square of the corresponding latent linear slope construct). As shown in Table 1.2,
this model (Model B) fits the data better than a model with only a linear term.
RMSEA is now 0.025 (vs.0.045), and the value of BIC is more negative (−263.44 vs.
−153.75). Table 1.3 shows the parameter estimates for this model. The intercept term
is 28.171, the linear slope is 1.115, and the quadratic slope is −0.139, all statistically
significant. The positive linear slope and negative quadratic slope indicate that BMI
tends to increase over time but at a diminishing rate. The coefficients for marital
status and education remain similar to those estimated for Model A, and the effect
of cohabitation remains non-significant.

A Latent Growth Curve Fixed-Effects Model for Longitudinal
Data

Another extension of the LGC REM model is to consider a LGC FEM model. As
indicated in Fig. 1.1, in a LGC REM there are no covariances allowed between the
latent terms and any of the time-varying covariates. If these covariances are allowed
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Fig. 1.2 Fixed-effects latent growth curve

to differ from zero then a LGC FEM model results. As far as I am aware, such a model
has not been presented in the existing literature dealing with LGCMs even though
the extension from an LGC REM is straightforward. A LGC FEM is illustrated in
Fig. 1.2 where non-zero covariances between the latent intercept and slope terms
and the time-varying covariates are allowed. The value in estimating a LGC FEM
is that it will provide unbiased estimates of the effects of included covariates if they
are correlated with unmeasured latent terms.

The fit statistics for the LGC FEM shown in Fig. 1.2 are presented in Table 1.2
(Model C). Compared to Model A, the RMSEA is larger (0.058 vs. 0.025) and BIC is
less negative (−18.16 vs. −263.44). The parameter estimates for this model shown
in Table 1.3 indicate an intercept term of 25.585 and a slope of 0.682, values similar
to the LGC REM. The effects of cohabitation and marriage are also similar to those
estimated in the LGC REM (although the non-significant effect of cohabitation is now
larger), but the effect of education is no longer negative and statistically significant,
indicating that its impact was due to covariation with the latent factor.

An improvement in model fit results when estimating a LGC FEM that allows a
latent quadratic slope term. For the sake of parsimony, when estimating this model
I allowed only the latent intercept and latent linear slope constructs to be correlated
with the time-varying covariates. The fit statistics for Model D in Table 1.2 (LR
chi-square 61.98/25, RMSEA = 0.020, and BIC = −124.87) indicate a better fit to
the data than Model C. The parameter estimates shown in Table 1.3 indicate that,
similar to Model C, the only time-varying covariate to affect BMI is being married.
Although the LGC FEM in Model D with a quadratic term yields a better fit than
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the LGC FEM in Model C with only a linear term, the fit compared to the LGC
REM with a quadratic term (Model B) is equivocal. Whereas the RMSEA is smaller
(0.020 vs. 0.025), the difference in BIC statistics is considerable with the REM
version possessing a much more negative BIC value (−263.44 vs. −124.87). The
difference in BIC values suggests an elaboration of the LGC FEM that may lead to
a better fitting model.

Specifically, the LGC FEM estimated in Model D includes a sizeable number
of estimated covariances between the latent constructs and the time-varying covari-
ates (even though the latent quadratic term was not allowed to covary with these
covariates). As indicated earlier, BIC strongly penalizes models that estimate more
parameters than necessary. If some of the covariances are statistically indistinguish-
able from zero, then valuable degrees of freedom are being wasted. When I examined
the covariances estimated in Model D, I found that most of them were not distin-
guishable from zero. Indeed, the only covariances that were consistently significant
involved schooling and the latent intercept term. Fit statistics for a LGC FEM allow-
ing only these covariances between latent and observed terms are shown in Model E
of Table 1.2. I term this a hybrid LGC because it involves only a subset of all possible
covariances between the latent and observed variables. Compared to Model B, the
LR chi-square value (83.63/45) and the RMSEA value (0.022) indicate a better fit
to the data. The BIC value for this model (−252.68) is not quite as negative as the
BIC value for the LGC REM with a quadratic term (−263.44) but is a significant
improvement over earlier versions of the LGC FEM.

Parameter estimates for Model E are shown in Table 1.3. Also shown in Table 1.3
for Model E are the covariances between education and the latent intercept term. Each
of the four covariances is statistically significant and negative. In other words, there
are unmeasured factors that link having more education with lower body weight.

Model E suggests two important points with respect to the effects of the time-
varying covariates. First, the effect of marital status is not substantially biased by
failure to include covariances with the latent terms in the model. Thus, we can be
more confident in our ability to state that being married is positively linked to BMI
whereas cohabitation is not. Second, the effect of education is biased by the failure to
include covariances with the latent terms in the model (here the latent intercept term).

Time-Constant Covariates in Latent Growth Curve Models
with Fixed Effects

An extension often found in standard LGC REMs is to allow the latent constructs to
be functions of time-constant observed variables. In other words, between respondent
variation in the outcome under consideration can be modeled. Consider the following
equations:

yit = βyxtXit + βyη0tηoi + βyη1tη1i + εit (1.4)

ηoi = α00 + γη0zZi + δ0i (1.5)
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η1i = α10 + γη1zZi + δ1i (1.6)

α00 and α10 are constant terms; γη0z and γη1z are slopes; Zi is a time-constant variable
affecting the latent intercept and slope; δ0i and δ0i are error terms; and all other
terms are as defined earlier. Equations 1.4–1.6 emphasize the hierarchical nature
of the LGC framework, which uses information both within- and between-subjects.
Within-subject variation is modeled as a function of the latent intercept and slope,
as well as time-varying covariates. Between-subject variation in the latent intercepts
and slopes is modeled as a function of variation on time-constant variables such as
race or ethnicity.

Assuming that Zi is a measure of race/ethnicity (Black and Hispanic), this model
assumes that the effects of race/ethnicity on BMI are mediated by the latent intercept
and slopes. Fit statistics for this model are presented in Table 1.2 (Model F). Com-
pared to previous models, this model fits the data well with LR chi-square = 87.11/49,
RMSE = 0 .021 and BIC = −279.10. Parameter estimates for this Model F are shown
in Table 1.3. The results indicate that Blacks (0.850) and Hispanics (1.519) have
higher initial levels of BMI, with the value for Hispanics being nearly twice as high
as that for Blacks. The pace of increase in BMI is greater for Blacks (0.215) com-
pared to Whites but does not differ for Hispanics. For the sake of simplicity, I did
not allow race/ethnicity to affect the quadratic slope term.

Although not common in the literature, it is possible to allow time-constant
variables to affect the time-varying dependent variable(s) directly. No special ac-
commodations are necessary to do this in the LGC REM. In the LGC FEM, however,
covariances between the latent terms and the time-constant variable must be set to
zero in order for the model to be identified. The mediated model assumes that all
of the effects of the time-constant variable are captured by its impact on the latent
growth parameters. This assumption is strong and it may well be the case that the
time-constant variable directly affects the outcome variables being examined and not
the intercept and trajectory of change.

A model that includes both the direct and mediated effects of a time-constant
variable is not identified. Thus, researchers will need to choose between the two.
Fortunately, it has been shown that the mediated model is nested within the direct
model (Stoel et al. 2004) This nesting means that a LR chi-square test can be used
to determine whether the direct model is warranted. Table 1.2 presents fit statistics
for a model allowing direct effects of race/ethnicity on BMI (Model G). This model
constrains the effect of race/ethnicity to be constant across all four measurement
points. The LR chi-square value (101.02/51) and the RMSEA (0.024) indicate that
the mediated model should be preferred. (There is little difference between BIC
values.) The parameter estimates for Model G in Table 1.3 indicate that the effect
of being Black (1.010) or Hispanic (1.569) is to increase BMI at each point in time.
Estimates of the latent growth parameters are similar to previous estimates.

As noted, Model G constrains the direct effects of race/ethnicity to be equal
across all four time points. It may be plausible that these effects differ across time.
Accordingly, Model H represents a model where the effects of race/ethnicity are
free to vary over time. This model fits the data better than the mediated model
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according to the LR chi-square (72.18/45 vs. 87.11/49) and RMSEA (0.019 vs.
0.021). Because more degrees of freedom are being used though, the BIC value
(−264.13 vs. −279.10) indicates a preference for the mediated model. Additional
elaborations are possible. Model I in Table 1.2 extends Model H by allowing unequal
variances for the error terms associated with each value of BMI. Model J continues
relaxing assumptions in that the time-varying predictors are allowed to have effects
on BMI that vary across time. Model fit statistics indicate that these models do not
yield an improvement in fit to the data, and I do not discuss them further.

A final model (K) is shown in Table 1.2. In this model, the effects of race/ethnicity
are mediated through the latent terms, and unequal error variances in BMI are
allowed. The LR chi-square value (53.81/46) and RMSEA value (0.010) when com-
pared to Model I do not indicate a better fit to the data. The value of BIC (− 289.98),
however, indicates that this model may be the preferred option. The parameter esti-
mates shown in Table 1.3 indicate parameter estimates very similar to those shown
for Model F. Hispanics have the highest initial levels of BMI followed by Blacks and
then Whites. Compared to Whites the rate of change in BMI is steeper for Blacks but
not Hispanics. The freed variances for the four measures of BMI continue to indicate
increasing random variation over time. In terms of marital status and education, be-
ing married or in a cohabiting relationship increases BMI, whereas there is no effect
of schooling once a fixed-effects estimator is employed.

A Latent Growth Curve Model for Paired Data

I have outlined what I believe to be some valuable extensions of LGCMs for family
data, using data on BMI and marital status taken from the National Longitudinal
Study of Youth (NLSY). I now offer a further extension with a simple example. The
extension I propose is for paired or matched family data. That is, data that refer to two
or more members of the same family. Neale and McArdle (2000) have shown how
LGCMs can be used to examine twin data. An empirical example of this procedure
is provided by Hjelmborg et al. (2008) who demonstrate that genetic influences on
rate of change in BMI are different from those affecting level of BMI. In essence
this procedure takes advantage of the fact that multilevel models, including LGCMs,
can be estimated simultaneously for multiple groups. A model is estimated simulta-
neously for several groups (e.g., identical twins, fraternal twins) and constraints are
imposed on the various parameters of the model across groups in order to determine
whether the models for particular twin groups differ from those of other twin groups.

Although this is a very useful approach and one that demonstrates the ability
of the model to be estimated across groups, it does have limitations. In particular,
such a model does not allow the parameters of one group to affect the parameters
of another group, much like one would anticipate in a family group. Similarities
are assumed to be a function of shared genetic potential rather than patterns of
interaction. This limitation may make sense when examining twin data but is less
useful in other circumstances. For example, consider the case of a married couple
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Fig. 1.3 Latent growth curve model for paired processes

and their respective paths of change in marital satisfaction over time. It may be the
case that the trajectory of marital satisfaction in one spouse affects or is affected by
the trajectory of the other spouse.

A generic example of this notion is illustrated in Fig. 1.3. Walker et al. (1996)
provide an example of this sort of model using data on two variables (amount of care-
giving performed and satisfaction with caregiving) measured for a single individual.
In Fig. 1.3, I assume there is longitudinal information obtained on one variable (here
marital satisfaction) for two related individuals (husband and wife). A very simple
model is presented with no time varying covariates affecting the measured variable
of interest. It is a simple extension of Fig. 1.3 to include time varying covariates
and thus have the ability to estimate REM or FEM LGCMs in this framework as
described earlier.

The most important components of the model in Fig. 1.3 for the purposes of
matched processes are the relationships allowed between the intercepts and slopes
across the two persons in the model. Two-way arrows are shown indicating no as-
sumed directionality of effects (i.e., simply the covariance between the two terms).
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With proper theoretical justification and appropriate specification, effects in each
direction could be estimated. The arrow linking the intercepts indicates matching
on the underlying value of the variable in question. Using the marital satisfaction of
married couples, the covariance between intercepts can be interpreted to illustrate
the degree of marital matching on relationship quality. The covariance between the
slopes can be interpreted to illustrate the extent to which the paths of change in
marital satisfaction within a married couple are linked.

I estimated such a model using four waves of data taken from the Early Years
of Marriage Project (EYMP), (Veroff et al. 1986–1989) Data on marital satisfaction
were collected in 1986, 1987, 1988, and 1989. Using information provided by 218
continuously-married couples, I computed a simple additive marital satisfaction scale
based on four items: (1) how likely do you believe your marriage will be intact in
five years, (2) how stable do you perceive your marriage to be, (3) have you ever
considered leaving your marriage, and (4) how satisfied are you with your marriage.
Higher scores indicate a greater degree of marital dissatisfaction.

The model estimated corresponds to that shown in Fig. 1.3 using four time points
in the EYMP. I did not attempt to find a best fitting model, but I did compare two
models that were otherwise identical. The first model constrained the covariances
between the intercepts and slopes of husbands and wives to be equal to zero. The
second model allowed these covariances to vary. The second model fitted the data
much better (X2 = 120.35 with 2 df). The covariance between the intercepts was
0.60, and the covariance between the slopes was 0.16. The slopes were positive
(1.05 for wives and 0.87 for husbands) reflecting growing marital dissatisfaction
over time. The positive correlation between the slopes for the spouses indicates that
the pace at which one spouse’s marital dissatisfaction grows influences the pace at
which the other spouse’s dissatisfaction grows. Failure to consider the joint influence
of each spouse on the other would yield a biased estimate of the pace of change in
marital dissatisfaction. (Here, failure to include the positive covariance yields an
overestimate of the trajectory of change in marital dissatisfaction for each spouse—
results not shown.) More importantly, failure to include the covariance yields an
unrealistic model where the marital satisfaction of each spouse supposedly unfolds
over time in a manner not affected by the other spouse’s marital satisfaction.

Discussion

In this chapter, I have outlined the straightforward extension of REMs and FEMs to
LGCMs. Whereas, LGCMs are prevalent in some disciplines such as developmental
psychology, they remain rare in family studies. If the phenomenon under study
changes across time in a systemic fashion, LGCMs offer the opportunity to model
this change. Existing versions of the LGCM are all in the REM framework. That is, the
latent terms describing initial levels and change in levels of the dependent variable are
assumed to be independent of any other covariates affecting the dependent variable.
This is a strong assumption and violations may lead to biased estimates of parameters.
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I show that the SEM framework provides researchers a way to test this assumption by
allowing estimation of fixed-effect versions of the LGCM. By allowing all or some
of the time-varying covariates to covary with the included latent terms, LGC FEM
provides a powerful tool, allowing researchers to account for patterns of covariation
that may bias parameter estimates.

Further, I show how time-constant covariates can be included in LGCMs. The
effects of time-constant covariates may be expressed directly on the latent parameters
of the model or directly on the outcome under consideration. Because these two
models are nested, a simple LR Chi-square test can be used to adjudicate between
the two.

Finally, I show how matched or paired data can be examined within the framework
of LGCMs. These models assume that the parameters underlying the trajectory of
change across time for one partner affect the same parameters for the other partner.
Failure to account for the covariation of these parameters can lead to biased estimated
of the underlying parameters.
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Families as Coordinated Symbiotic Systems: Making
use of Nonlinear Dynamic Models

Families are often conceptualized as continually evolving, relational systems (Cox
and Paley 1997; Minuchin 1985). Individual members influence and are influenced
by all other members. These reciprocal relations coalesce into family-level sym-
biotic processes and are the core of study in family systems research and therapy
(see Lunkenheimer et al. 2012). Wohlwill (1991) noted that, “. . . what [reciprocal
relationships] would call for are methodologies that allow one to model the interpat-
terning between two [or more] sets of processes each of which is undergoing change,
in part as a function of the other . . . The closest approach to this kind of modeling
that is indicated for this purpose are probably some of the models from the field of
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