Micromanufacturing and Nanotechnology

von: Nitaigour P. Mahalik

Springer-Verlag, 2006

ISBN: 9783540293392 , 468 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 149,79 EUR

Mehr zum Inhalt

Micromanufacturing and Nanotechnology


 

Preface

8

Contents

11

Authors

21

1 Introduction

24

1.1 Background

24

1.2 Introduction

25

1.2.1 Precision Engineering

25

1.2.2 Micromilling and Microdrilling

26

1.3 Microelectromechanical Systems (MEMS)

28

1.3.1 An Example: Microphenomenon in Electrophotography

29

1.4 Microelectronics Fabrication Methods

30

1.4.1 Bulk Micromachining

31

1.4.2 Surface Micromachining

31

1.5 Microinstrumentation

32

1.6 Micromechatronics

32

1.7 Nanofinishing

33

1.8 Optically Variable Device

33

1.9 MECS

34

1.10 Space Micropropulsion

34

1.11 e-Beam Nanolithography

35

1.12 Nanotechnology

35

1.13 Carbon Nanotubes and Structures

36

1.14 Molecular Logic Gates

37

1.15 Microdevices as Nanolevel Biosensors

38

1.16 Crosslinking in C60 and Derivatisation

39

1.17 Fuel Cell

40

1.18 References

40

2 Principles of MEMS and MOEMS

42

2.1 Introduction

42

2.2 Driving Principles for Actuation

43

2.3 Fabrication Process

44

2.4 Mechanical MEMS

46

2.4.1 Mechanical sensors

46

2.4.2 Accelerometer, Cantilever and Capacitive Measurement

47

2.4.3 Microphone

48

2.4.4 Gyroscope

49

2.4.5 Mechanical Actuators

49

2.5 Thermal MEMS

51

2.5.1 Thermometry

52

2.5.2 Data Storage Applications

53

2.5.3 Microhotplate Gas Sensors

53

2.5.4 Thermoactuators

54

2.6 Magnetic MEMS

54

2.7 MOEMS

58

2.8 Spatial Light Modulator

60

2.9 Digital Micromirror Device

61

2.10 Grating Light Valve (GLV)

63

2.11 References

65

3 Laser Technology in Micromanufacturing

68

3.1. Introduction

68

3.2. Generation of Laser Light

68

3.3 Properties of Laser Light

72

3.3.1 Monochromacity

73

3.3.2 Directionality

73

3.3.3 Brightness

74

3.3.4 Coherence

74

3.3.5 Spatial Profile

74

3.3.6 Temporal Profile

75

3.4 Practical Lasers

75

3.5 Laser Technology in Micromanufacturing

77

3.5.1 Background

77

3.5.2 Absorption and Reflection of Laser Light

77

3.5.3 Application Technology Fundamentals

79

3.6 References

84

4 Soft Geometrical Error Compensation Methods Using Laser Interferometer

86

4.1 Introduction

86

4.2 Overview of Geometrical Error Calibration

87

4.2.1 Error Measurement System

89

4.2.2 Accuracy Assessment

90

4.3 Geometrical Error Compensation Schemes

91

4.3.1 Look-up Table for Geometrical Errors

92

4.3.2 Parametric Model for Geometrical Errors

93

4.4 Experimental Results

96

4.4.1 Error Approximations

97

4.4.2 Linear Errors

97

4.4.3 Straightness Errors

100

4.4.4 Angular Errors

100

4.4.5 Squareness Error

101

4.4.2 Assessment

102

4.5 Conclusions

102

4.6 Reference

104

5 Characterising Etching Processes in Bulk Micromachining

106

5.1 Introduction

106

5.2 Wet Bulk Micromachining (WBM)

106

5.3 Review

107

5.4 Crystallography and its Effects

108

5.4.1 An Example

109

5.5 Silicon as Substrate and Structural Material

110

5.5.1 Silicon as a Substrate

110

5.5.2 Silicon as Structural Material

111

5.5.3 Stress and Strain

111

5.5.4 Thermal Properties of Silicon

115

5.6 Wet Etching Process

115

5.6.1 Isotropic Etchants

116

5.6.2 Reaction Phenomena

116

5.6.3 Isotropic Etch Curves

117

5.6.4 Masking

119

5.6.5 DD Etchants

120

5.7 Anisotropic Etching

120

5.7.1 Anisotropic Etchants

121

5.7.2 Masking for Anisotropic Etchants

121

5.8 Etching Control: The Etch-stop

122

5.8.1 Boron Diffusion Etch-stop

122

5.8.2 Electrochemical Etch-stop

123

5.8.3 Thin Films and SOI Etch-stop

124

5.9 Problems with Etching in Bulk Micromachining

125

5.9.1 RE Consumption

125

5.9.2 Corner Compensation

126

5.10 Conclusions

127

5.11 References

127

6 Features of Surface Micromachining and Wafer Bonding Process

130

6.1 Introduction

130

6.2 Photolithography

131

6.3 Surface Micromachining

134

6.3.1 Bulk versus Surface Micromachining

135

6.4 Characterising the Surface Micromachining Process

136

6.4.1 Isolation Layer

136

6.4.2 Sacrificial Layer

137

6.4.3 Structural Material

137

6.4.4 Selective Etching

138

6.5 Properties

139

6.5.1 Adhesion

140

6.5.2 Stress

141

6.5.3 Stiction

144

6.6 Wafer Bonding

145

6.6.1 Anodic Bonding

146

6.6.2 Fusion Bonding

147

6.7 Summary

148

6.8 References

150

7 Micromanufacturing for Document Security: Optically Variable Devices

154

7.1 Preamble

154

7.2 Introduction

154

7.3 OVD Foil Microstructures

156

7.3.1 The Security Hologram

156

7.3.2 The Kinegram

157

7.3.3 The Catpix Electron Beam Lithography Microstructure

160

7.3.4 Structural Stability

161

7.3.5 The Pixelgram Palette Concept

162

7.3.6 The Exelgram Track based OVD Microstructure

164

7.3.7 Covert Image Micrographic Security Features

167

7.3.8 Kinegram and Exelgram: Comparison

168

7.3.9 Vectorgram Image Multiplexing

168

7.3.10 Interstitial Groove Element Modulation

171

7.4 Generic OVD Microstructures

172

7.4.1 Optically Variable Ink Technology

173

7.4.2 Diffractive Data Foils

174

7.4.3 Biometric OVD Technology

177

7.5 NanoCODES

180

7.5.1 The Micromirror OVD

182

7.5.2 Origination of a Micromirror OVD

183

7.5.3 Summary of Micromirror OVD Optical Effects

187

7.6 Conclusions

189

7.7 References

190

8 Nanofinishing Techniques

194

8.1 Introduction

194

8.2 Traditional Finishing Processes

196

8.2.1 Grinding

196

8.2.2 Lapping

196

8.2.3 Honing

197

8.3 Advanced Finishing Processes (AFPs)

197

8.3.1 Abrasive Flow Machining (AFM)

198

8.3.2 Magnetic Abrasive Finishing (MAF)

201

8.3.3 Magnetorheological Finishing (MRF)

203

8.3.4 Magnetorheological Abrasive Flow Finishing (MRAFF)

206

8.3.5 Magnetic Float Polishing (MFP)

211

8.3.6 Elastic Emission Machining (EEM)

212

8.3.7 Ion Beam Machining (IBM)

213

8.3.8 Chemical Mechanical Polishing (CMP)

215

8.4 References

216

9 Micro and Nanotechnology Applications for Space Micropropulsion

220

9.1 Introduction

220

9.2 Subsystems and Devices for Miniaturised Spacecrafts Micropropulsion

224

9.3 Propulsion Systems

230

9.3.1 Solid Propellant

231

9.3.2 Cold-Gas

231

9.3.3 Colloid Thrusters

231

9.3.4 Warm-Gas

231

9.3.5 Monopropellant and Bipropellant Systems

231

9.3.6 Regenerative-Pressurisation Cycles

232

9.3.7 ADCS

232

9.4 Realisation of a Cold-Gas Microthruster

232

9.4.1 Gas- and Fluid Dynamics

233

9.4.2 Prototyping

234

9.5 Conclusions

240

9.6 References

240

10 Carbon Nanotube Production and Applications: Basis of Nanotechnology

242

10.1 Introduction

242

10.2 Nanotechnology and Carbon Nanotube Promises

242

10.3 Growing Interest in Carbon Nanotube

244

10.4 Structure and Properties of Carbon Nanotubes

246

10.5 Production of Carbon Nanotube

248

10.5.1 Chemical Vapour Deposition

249

10.5.2 Arc Discharge

250

10.5.3 Laser Ablation

251

10.5.4 Mechanisms of Growth

252

10.5.5 Purification of Carbon Nanotube

253

10.6 Applications of Carbon Nanotubes

254

10.6.1 Electrical Transport of Carbon Nanotubes for FET

254

10.6.2 Computers

256

10.6.3 CNT Nanodevices for Biomedical Application

257

10.6.4 X-Ray Equipment

258

10.6.5 CNTs for Nanomechanic Actuator and Artificial Muscles

259

10.6.6 Fuel Cells

260

10.6.7 Membrane Electrode Assembly

261

10.6.8 Mechanical and Electrical Reinforcement of Bipolar Plates with CNTs

262

10.6.9 Hydrogen Storage in CNTs

263

10.7 References

264

11 Carbon based Nanostructures

270

11.1 Introduction

270

11.2 History of Fullerenes

270

11.3 Structure of Carbon Nanotubes (CNTs)

271

11.3.1 Y-shaped

271

11.3.2 Double Helical

275

11.3.3 Bamboo-like Structure

275

11.3.4 Hierarchical Morphology Structure

275

11.3.5 Ring Structured MWCNTs

275

11.3.6 Cone Shape End Caps of MWCNTs

275

11.4 Structure of Fullerenes

276

11.4.1 Structure of C48 Fullerenes

276

11.4.2 Toroidal Fullerenes

276

11.4.3 Structure of C60, C59, C58, C57

276

11.4.4 The Smaller Fullerene C50

277

11.5 Structure of Carbon Nanoballs (CNBs)

279

11.6 Structure of Carbon Nanofibers (CNFs)

280

11.6.1 Hexagonal CNFs

280

11.6.2 Corn-shaped CNFs

280

11.6.3 Helical CNFs

280

11.7 Porous Carbon

281

11.8 Properties of Carbon Nanostructures

282

11.8.1 Molecular Properties

282

11.8.2 Electronic Properties

282

11.8.3 Optical Properties

282

11.8.4 Mechanical Properties

283

11.8.5 Periodic Properties

283

11.9 Synthesis

284

11.9.1 Carbon Nanotubes

284

11.9.2 Fullerenes

285

11.9.3 Nanoballs

286

11.9.4 Nanofibers

286

11.10 Potential Applications of Nanostructures

288

11.10.1 Energy Storage

288

11.10.2 Hydrogen Storage

288

11.10.3 Lithium Intercalation

289

11.10.4 Electrochemical Supercapacitors

290

11.10.5 Molecular Electronics with CNTs

291

11.11 Composite Materials

293

11.12 Summary

294

11.13 References

294

12 Molecular Logic Gates

298

12.1 Introduction

298

12.2 Logic Gates

298

12.3 Fluorescence based Molecular Logic Gates

300

12.4 Combinational Logic Circuits

308

12.5 Reconfigurable Molecular Logic

309

12.6 Absorption based Molecular Logic Gates

310

12.7 Molecular Logic Gates: Electronic Conductance

316

12.8 Conclusions

318

12.9 References

318

13 Nanomechanical Cantilever Devices for Biological Sensors

322

13.1 Introduction

322

13.2 Principles

323

13.3 Static Deformation Approach

324

13.4 Resonance Mode Approach

325

13.5 Heat Detection Approach

328

13.6 Microfabrication

329

13.6.1 Si-based Cantilever

329

13.6.2 Piezoresistive Integrated Cantilever

330

13.6.3 Piezoelectric Integrated Cantilever

331

13.7 Measurement and Readout Technique

332

13.7.1 Optical Method

332

13.7.2 Interferometry

333

13.7.3 Piezoresistive Method

333

13.7.4 Capacitance Method

334

13.7.5 Piezoelectric Method

334

13.8 Biological Sensing

336

13.8.1 DNA Detection

336

13.8.2 Protein Detection

338

13.8.3 Cell Detection

340

13.9 Conclusions

341

13.10 References

342

14 Micro Energy and Chemical Systems (MECS) and Multiscale Fabrication

346

14.1 Introduction

346

14.2 Micro Energy and Chemical Systems

350

14.2.1 Heat and Mass Transfer in MECS Devices

351

14.2.2 Applications of MECS Technology

351

14.3 MECS Fabrication

353

14.3.1 Challenges

353

14.3.2 Feature Sizes

354

14.3.3 Microlamination

355

14.4 Dimensional Control in Microlamination

357

14.4.1 Effects of Patterning on Microchannel Array Performance

358

14.4.2 Theory

359

14.4.3 Microchannel Fabrication

360

14.4.4 Results

361

14.5 Sources of Warpage in Microchannel Arrays

364

14.5.1 Analysis

366

14.5.2 Results

369

14.6 Effects of Registration and Bonding on Microchannel Array Performance

370

14.7 Geometrical Constraints in Microchannel Arrays

371

14.8 Economics of Microlamination

374

14.9 References

375

15 Sculptured Thin Films

380

15.1 Introduction

380

15.2 STF Growth

381

15.2.1 Experimental and Phenomenological

381

15.2.2 Computer Modeling

385

15. 3 Optical Properties

386

15.3.1 Theory

386

15.3.2 Characteristic Behavior

393

15.4 Applications

396

15.4.1 Optical

396

15.4.2 Chemical

398

15.4.3 Electronics

398

15.4.4 Biological

398

15.5 Concluding Remarks

399

15.6 References

400

16 e-Beam Nanolithography Integrated with Nanoassembly: Precision Chemical Engineering

406

16.1 Introduction

406

16.2 Electron-Beam Radiation

407

16.2.1 Polymeric Materials

407

16.2.2 Molecular Materials

408

16.3 Self-Assembled Monolayers

410

16.4 Summary and Outlook

414

16.5 References

415

17 Nanolithography in the Evanescent Near Field

420

17.1 Introduction

420

17.2 Historical Development

421

17.3 Principles of ENFOL

423

17.4 Mask Requirements and Fabrication

424

17.5 Pattern Definition

425

17.5.1 Exposure Conditions

425

17.5.2 Resist Requirements

426

the Diffraction Limit

426

17.6. Pattern Transfer

428

17.6.1 Subtractive Pattern Transfer

428

17.6.2 Additive Pattern Transfer

429

17.7 Simulations

430

17.7.1 Simulation Methods and Models

432

17.7.2 Intensity Distribution

433

17.7.3 Depth of Field (DOF)

434

17.7.4 Exposure Variations due to Edge Enhancements

436

17.8 Nanolithography using Surface Plasmons

437

17.8.1 Evanescent Interferometric Lithography (EIL)

438

17.8.2 Planar Lens Lithography (PLL)

439

17.8.3 Surface Plasmon Enhanced Contact Lithography (SPECL)

442

17.9 Conclusions

444

17.10 References

445

18 Nanotechnology for Fuel Cell Applications

448

18.1 Current State of the Knowledge and Needs

448

18.2 Nanoparticles in Heterogeneous Catalysis

450

18.3 Oxygen Electroreduction Reaction on Carbon-Supported Platinum Catalysts

452

18.4 Carbon Nanotubes as Catalyst Supports

455

18.5 Concluding Remarks

460

18.6 References

461

19 Derivatisation of Carbon Nanotubes with Amines: A Solvent-free Technique

464

19.1 Introduction

464

19.2 Experimental Design

465

19.3 Direct Amidation of Carboxylic Functionalities on Oxidised SWNT Tips

466

19.4 Direct Amine Addition to Closed Caps and Wall Defects of Pristine MWNTs

468

19.5 Conclusions

473

19.6 References

473

20 Chemical Crosslinking in C60 Thin Films

476

20.1 Introduction

476

20.2 Experiment

477

20.2.1 Analytical Instruments

477

20.2.2 Deposition of Fullerene Films

478

20.2.3 Reaction with 1,8-Diaminooctane

478

20.3 Results and Discussion

478

20.3.1 (1,8)-Diaminooctane-derivatised C60 Powder

478

20.3.2 1,8-Diaminooctane-derivatised C60 Films

479

Index

486