Digital Communication - Principles and System Modelling

von: Apurba Das

Springer-Verlag, 2010

ISBN: 9783642127434 , 246 Seiten

Format: PDF, OL

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Windows PC,Mac OSX,Linux

Preis: 96,29 EUR

Mehr zum Inhalt

Digital Communication - Principles and System Modelling


 

Preface

6

Salient Features

7

Acknowledgements

9

Contents

10

Chapter1 Preview and Introduction

15

1.1 Process of Communication

15

1.2 General Definition of Signal

17

1.3 Time-Value Definition of SignalsAnalog and Digital

20

1.3.1 Continuous Time Continuous Valued Signal

21

1.3.2 Discrete Time Continuous Valued Signal

21

1.3.3 Discrete Time Discrete Valued Signal

21

1.4 Analog and Digital Communication Systems

22

1.5 Elements of Digital Communication System

24

1.6 MATLAB Programs

25

1.6.1 Time and Frequency Domain Representation of Signals

25

1.6.2 CTSV, DTCV, DTDV Signals

26

References

27

Chapter2 Waveform Encoding

28

2.1 Introduction

28

2.2 Pulse Code Modulation (PCM)

28

2.2.1 Process of Sampling

29

2.2.1.1 Sampling Theorem

31

Case I

32

Case II

33

Case III

33

2.2.1.2 Aliasing

34

2.2.2 Process of Quantization

35

2.2.3 PCM Transmitter and Receiver

37

2.2.3.1 PCM Transmitter

37

2.2.3.2 PCM Receiver

39

2.2.4 Quantization Error

40

2.2.5 Signal to Noise Ratio (SNR) for Quantized Pulses

42

2.2.6 Non-uniform Quantization: Companding

43

2.2.6.1 -Law

45

2.2.6.2 A-Law

47

2.3 Differential Pulse Code Modulation (DPCM)

48

2.3.1 Cumulative Error in PCM

48

2.3.2 Prevention of Cumulative Error by Applying Feedback

49

2.3.3 How We Can Predict the Future?

51

2.3.4 Analysis of DPCM

53

2.4 Delta Modulation

54

2.4.1 Drawbacks of Delta Modulation

56

2.4.1.1 Slope Overloading

56

2.4.1.2 Granular Noise

57

2.5 Adaptive Delta Modulation

57

2.5.1 Song Algorithm

57

2.5.2 Space-Shuttle Algorithm

59

2.6 Sigma-Delta Modulation (SDM)

60

2.6.1 Noise Performance

61

2.7 Linear Predictive Coder (LPC)

62

2.7.1 Concept

62

2.7.2 Genetic Algorithm Based Approach

63

2.8 MATLAB Programs

66

2.8.1 Aliasing

66

References

67

Chapter3 Digital Baseband Signal Receivers

68

3.1 Introduction

68

3.2 Integrate and Dump Type Filter

69

3.2.1 Noise Power and Variance

72

3.2.2 Figure of Merit

74

3.2.3 Probability of Error

74

3.3 The Optimum Filter

76

3.4 The Matched Filter

80

3.4.1 Impulse Response

80

3.4.2 Probability of Error

80

3.4.3 Properties of Matched Filter

83

3.5 The Correlator

85

3.6 Simulink Communication Block Set Example

87

Integrate and Dump

87

Library

87

Description

87

Dialog Box

87

Examples

88

References

88

Chapter4 Digital Baseband Signal Transmitter

89

4.1 Introduction

89

4.2 Elements of Digital Baseband Communication System

89

4.2.1 Formatting

90

4.2.2 Regenerative Repeater

90

4.3 Properties and Choice of Digital Formats

92

4.4 Line Coding

93

4.5 Power Spectrum Density of Different Digital Formats

95

4.5.1 Unipolar-NRZ

98

4.5.2 Unipolar-RZ

99

4.5.3 Polar-NRZ

100

4.5.4 Polar-RZ

101

4.5.5 Bipolar-NRZ

102

4.5.6 Split-Phase (Manchester)

103

References

105

Chapter5 Equalization

106

5.1 Inter-Symbol Interference (ISI)

106

5.2 Nyquist Criterion for Distortion Less Transmission (Zero ISI)

108

5.2.1 Criteria in Frequency Domain

109

5.2.2 Concept of Ideal Nyquist Channel

111

5.2.3 Limitations of Ideal Solution: Raised Cosine Spectrum

112

5.3 Eye Pattern

114

5.3.1 Information Obtained from Eye Pattern

115

5.4 System Design for Known Channel

115

5.5 Linear Equalizer

117

5.5.1 Linear Transversal Filter

117

5.6 Adaptive Equalizer

119

References

121

Chapter6 Digital Modulation Techniques

122

6.1 Introduction

122

6.2 Amplitude Shift Keying (ASK)

123

6.2.1 Mathematical Model

124

6.2.1.1 On-0Off Keying ( OOK)

125

6.2.2 ASK Modulator

126

6.2.3 Binary ASK Demodulator

128

6.3 Frequency Shift Keying (FSK)

129

6.3.1 Mathematical Model

129

6.3.2 BFSK Modulator

130

6.3.3 FSK Demodulator

132

6.4 Binary Phase Shift Keying (BPSK)

133

6.4.1 Mathematical Model

134

6.4.2 BPSK Modulator

135

6.4.3 BPSK Demodulator

136

6.5 Differential Phase Shift Keying (DPSK)

136

6.5.1 DPSK Modulator

136

6.5.2 DPSK Demodulator

138

6.6 Quadrature Phase Shift Keying (QPSK)

138

6.6.1 Mathematical Model

138

6.6.2 QPSK Modulator

142

6.6.3 QPSK Demodulator

142

6.6.4 Offset QPSK (OQPSK)

143

6.7 Minimum Shift Keying (MSK)

145

6.8 Probability of Error for Different Modulation Schemes

147

6.8.1 Probability of Error in ASK

147

6.8.2 Probability of Error in FSK

148

6.8.3 Probability of Error in PSK

149

6.9 MATLAB Programs

150

6.9.1 QPSK Waveform

150

6.9.2 MSK Waveform

151

References

152

Chapter7 Spread Spectrum Modulation

153

7.1 Introduction

153

7.2 Processing Gain

154

7.3 Pseudo-Noise (PN) Sequence

155

7.3.1 Concept: A Hypothetical Experiment

155

7.3.2 Generation of PN Sequence

156

7.3.3 Properties of PN Sequence

157

7.4 Direct Sequence Spread Spectrum (DSSS)

159

7.4.1 Concept

159

7.4.2 DSSS with Coherent BPSK

161

7.4.3 Probability of Error Calculation

162

7.5 Frequency-Hopped Spread Spectrum

165

7.5.1 Concept

165

7.5.2 FHSS with FSK

167

7.5.3 Rate of Hopping: Fast and Slow

169

7.6 Application of Spread Spectrum

169

7.6.1 GPS (Global Positioning System)

169

7.7 CDMA (Code Division Multiple Access)

173

7.7.1 Orthogonal Chip Sequence

173

7.7.2 Gold Sequence

175

7.7.3 Principle of Operation

176

7.7.3.1 MUX

176

7.7.3.2 DMUX

176

References

176

Chapter8 Information Theory

178

8.1 Introduction

178

8.2 Entropy

180

8.3 Rate of Information

182

8.4 Information Sources

182

8.5 Discrete Memoryless Channel (DMC)

185

8.5.1 Channel Representation

185

8.5.2 The Channel Matrix

185

8.6 Special Channels

186

8.6.1 Lossless Channel

186

8.6.2 Deterministic Channel

187

8.6.3 Noise-Less Channel

188

8.6.4 Binary Symmetric Channel (BSC)

188

8.6.4.1 Saturated or Stable Probability of Error for Cascaded BSC Channel

189

8.6.4.2 Probability Model of Erroneous Detection in Cascaded BSC

189

8.7 Mutual Information

191

8.8 Channel Capacity

192

8.8.1 Gaussian Channel: Shanon-Hartley Theorem

192

8.9 Entropy Coding

194

8.9.1 Shanon-Fano Coding

195

8.9.2 Huffman Coding

196

8.10 MATLAB Code

197

8.10.1 Convergence of Pe in Cascaded BSC

197

References

198

Chapter9 Error Control Coding

199

9.1 Introduction

199

9.2 Scope of Coding

200

Forward Error Correction

200

9.3 Linear Block Code

201

9.3.1 Coding Technique Using Generator Matrix

201

9.3.2 Syndrome Decoding

203

9.4 Convolutional Code

204

9.4.1 Encoder

204

9.4.1.1 Operation

205

9.4.1.2 Code Rate

207

9.4.2 State Diagram

207

9.4.3 Code Tree

208

9.4.4 Trellis Diagram

208

9.4.5 Decoding of Convolutional Code by Viterbi

210

9.4.5.1 Metric

210

9.4.5.2 Surviving Path

210

9.4.5.3 Principle of Decoding

210

9.5 Cyclic Code

212

9.5.1 Concept and Properties

212

9.5.2 Encoder and Decoder

214

9.5.3 Meggitt Decoder

215

9.6 BCH Code

215

9.6.1 Simplified BCH Codes

216

9.6.2 General BCH Codes

218

9.6.3 Properties

218

References

219

AppendixAElementary Probability Theory

220

A.1 Concept of Probability

220

A.1.1 Random Experiments and Sample Space

220

A.1.2 Events

221

A.1.3 Probability-Understanding Approaches

221

A.2 Random Variable

221

A.3 Mean, Variance, Skew-ness and Kurtosis

222

A.4 Cumulative Distribution Function (CDF)

224

A.5 Probability Density Function (PDF)

226

A.5.1 Uniform PDF

226

A.5.2 Frequently Used Probability Distribution

227

A.5.2.1. Bernoulli Distribution

227

A.5.2.2 Gaussian Distribution

228

A.5.2.3. Poisson Distribution

228

A.5.2.4 Rayleigh Distribution

228

References

231

Appendix BConvolution and Correlation – Some CaseStudies

232

B.1 Convolution

232

B.1.1 Basic Properties of Convolution

234

B.1.1.1 Commutative Law

234

B.1.1.2 Associative Law

235

B.1.1.3 Distributive Law

235

B.1.1.4 Transformed Domain Simplicity

236

B.1.2 Case 1: Periodicity of Sampled Spectra

237

B.1.3 Case 2: Transmission of Normally Distributed Information

238

B.1.4 Case 3: Long Multiplication Using Convolution

239

B.2 Correlation

239

B.2.1 Case Study: Pattern (Shape Feature) Matching Between Two Objects Using Cross-Correlation

241

References

243

AppendixC Frequently Used MATLAB Functions

244

plot()

244

Description

244

imshow()

244

Description

245

drawnow()

245

Description

246

Remarks

246

Examples

246

stairs()

246

int2str()

246

Description

247

Examples

247

conv()

247

ginput()

248

Interactive Plotting

248

spline()

248

Description

249

Exceptions

250

Example

250

Reference

251

Index

252