Emerging Environmental Technologies, Volume II

Emerging Environmental Technologies, Volume II

von: Vishal Shah

Springer-Verlag, 2009

ISBN: 9789048133529 , 247 Seiten

Format: PDF

Kopierschutz: Wasserzeichen

Windows PC,Mac OSX geeignet für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's

Preis: 96,29 EUR

Mehr zum Inhalt

Emerging Environmental Technologies, Volume II


 

Emerging Environmental Technologies

1

Preface

4

Contents

5

Contributors

6

1 Immobilization of Uranium in Groundwater Using Biofilms

9

1.1 Introduction

10

1.2 Remediation Technologies

11

1.2.1 Physical and Chemical Remediation of Uranium

12

1.2.2 Bioremediation of Uranium

13

1.2.2.1 Uranium Bioimmobilization Mechanisms

13

1.2.2.2 Bioremediation Principles: From the Laboratory to the Field

19

1.2.2.3 Redox, Abiotic and Biotic Reactions

20

1.3 Biofilms Immobilizing Uranium

23

1.3.1 Definition of Biofilms

23

1.3.2 Uranium Immobilization Mechanisms Using Sulfate-Reducing Biofilms

24

1.3.3 Uranium Immobilization Mechanisms Using DIRB Biofilms

25

1.3.4 Biofilm Reactors for Studying Uranium Immobilization

26

1.3.4.1 Flat Plate Reactor

26

1.3.4.2 Fixed Bed Column Reactor

27

1.3.5 Uranium Immobilization Using Biofilms Grown on Various Surfaces

29

1.3.5.1 Biofilms Grown on Redox-Insensitive Surfaces

29

1.4 Conclusion

36

References

37

2 Encapsulation of Potassium Permanganate Oxidant in Biodegradable Polymers to Develop a Novel Form of Controlled-Release Remediation

46

2.1 Introduction

46

2.2 Controlled Release Chemical Oxidation and Literature Review

48

2.3 Experimental Discussion

51

2.3.1 Materials

52

2.3.2 Stability of KMnO4

53

2.3.3 Release Studies for Encapsulated KMnO4

53

2.3.3.1 Replacement Media Study

55

2.3.3.2 Continuous Release Study

55

2.3.4 Reaction with Trichloroethylene

58

2.3.5 Potential Challenges for CRBP KMnO4 Remediation

58

2.4 Future Considerations and Conclusion

59

References

60

3 Decontaminating Heavy Metals from Water Using Photosynthetic Microbes

63

3.1 Introduction

63

3.2 Membrane Transport of Heavy Metals

65

3.3 Uptake and Assimilation of Sulfate

65

3.4 Metallothioneins

66

3.4.1 Class II Metallothioneins

67

3.4.2 Class III Metallothioneins

68

3.4.3 Labile and Non-labile Phases of Metals

68

3.4.4 Sequestration and Compartmentalization of Phytochelatins

69

3.4.5 Cellular Exportation of Phytochelatins

69

3.5 Toxicity of Heavy Metals

70

3.6 Genetic Transformation Studies

70

3.7 Metal Sulfide Biotransformation

71

3.7.1 Anaerobic Metal-Sulfide Production

71

3.7.2 Aerobic Metal-Sulfide Biotransformation

71

3.8 Metal Bioremediation

72

3.8.1 Packed-Bed Bioreactor

73

3.8.2 Other Metal Bioremediation Systems

73

3.8.3 Potential Aerobic Metal-Sulfide Bioremediation

74

3.9 Future Considerations

75

References

75

4 Noise: The Invisible Pollutant that Cannot Be Ignored

80

4.1 Introduction

80

4.2 Defining Sound and Noise

81

4.3 Effects of Noise on Hearing

82

4.4 Noise and Annoyance

84

4.5 Effects of Noise on Physical Health and Well-Being

86

4.6 Effects of Noise on Childrens Language, Cognition and Learning

88

4.7 Noise and Sleep

89

4.8 Mental and Social Effects of Noise

90

4.9 Lessening the Noise: Legislation, Technology, and Education

91

4.9.1 The Role of Legislation in Noise Mitigation

91

4.9.2 The Role of Technology in Noise Mitigation

93

4.9.2.1 Noise Mitigation at the Source

93

4.9.2.2 Noise Mitigation Along the Path of Transmission

95

4.9.2.3 Noise Mitigation at the Receiver

95

4.10 Education

96

4.11 Concluding Comments

97

References

98

5 Energy Production from Food Industry Wastewaters Using Bioelectrochemical Cells

102

5.1 Introduction

103

5.2 Materials and Methods

105

5.2.1 Calculations to Determine Electricity Production Potential

105

5.2.2 Calculations to Determine Hydrogen Production Potential

107

5.2.3 MFC Application in a Dairy Industry -- an Experimental Study

107

5.2.4 Wastewater Collection and Use

108

5.2.5 Electrical and Analytical Measurements

108

5.3 Results and Discussion

109

5.3.1 Electricity Production Potential from Food Industry Wastewaters

109

5.3.2 Hydrogen Production Potential From Food Industry Wastewaters

109

5.3.3 Electricity Production from Dairy Wastewater

109

5.3.4 Complex Organic Matter in Dairy Processing Wastewater

111

5.3.5 Assessment of MFC/MEC Application for Food Industry Wastewater Treatment

111

5.3.5.1 Deriving Energy from Complex Organic Matter

111

5.3.5.2 Potential for Enabling Higher Power Densities and Practical Applications

113

5.3.5.3 Potential for Water Reuse and Recycle

114

5.4 Conclusions

115

References

116

6 Needle-Type Multi-Analyte MEMS Sensor Arrays for In Situ Measurements in Biofilms

119

6.1 Introduction

120

6.1.1 Industrial Applications of Biofilms

122

6.1.2 Biofilms in Environmental Systems

122

6.2 Needle-Type Microelectrode Array (MEA) Sensor

123

6.2.1 Overview and Rationale

123

6.2.2 MEA Fabrication

126

6.2.3 ORP MEA Sensor

131

6.2.4 DO MEA Sensor

133

6.3 Phosphate MEA Sensor

135

6.3.1 DO and ORP Microprofile Measurements in Biofilms

139

6.3.2 Phosphate Microprofile Measurements in Biofilms

142

6.4 Conclusions

144

References

145

7 Fundamentals and Applications of Entrapped Cell Bioaugmentation for Contaminant Removal

150

7.1 Introduction

150

7.2 Cell Entrapment

151

7.2.1 General Principles of Cell Entrapment

152

7.2.2 Widely Used Cell Entrapment Matrices and Procedures

154

7.2.2.1 Calcium Alginate

154

7.2.2.2 Carrageenan

156

7.2.2.3 Polyvinyl Alcohol

157

7.2.2.4 Cellulose Triacetate

159

7.2.3 Advantages and Drawbacks of Entrapped Cells

159

7.3 Applications of Entrapped Cell Bioaugmentation

160

7.3.1 Wastewater Treatment

160

7.3.1.1 Calcium Alginate Entrapped Cell Bioaugmentation

160

7.3.1.2 Carrageenan Entrapped Cell Bioaugmentation

163

7.3.1.3 Polyvinyl Alcohol Entrapped Cell Bioaugmentation

164

7.3.1.4 Cellulose Triacetate Entrapped Cell Bioaugmentation

165

7.3.2 Site Remediation

166

7.3.2.1 Calcium Alginate Entrapped Cell Bioaugmentation

166

7.3.2.2 Polyvinyl Alcohol Entrapped Cell Bioaugmentation

166

7.3.2.3 Carragenan and Cellulose Triacetate Entrapped Cell Bioaugmentation

167

7.4 Conclusions and Future Perspectives

168

References

169

8 Biofuels for Transport: Prospects and Challenges

173

8.1 Introduction

173

8.2 Biofuels: Processes and Technologies

176

8.2.1 First Generation Biofuels

176

8.2.1.1 Biofuels Produced by Chemical Conversion

176

8.2.1.2 Biofuels Produced by Biological Conversion

179

8.2.2 Second Generation Biofuels

181

8.2.2.1 Biofuels Prepared by Chemical Conversion

182

8.2.2.2 Biofuels Produced by Thermo-(Chemical) Conversion

184

8.2.2.3 Biofuels Produced by Biological Conversion

189

8.3 Engine Performance of Biofuels

191

8.3.1 Diesel Engines Performance Using Biodiesel

191

8.3.1.1 Effect of Biodiesel on Engine Performance Properties

192

8.3.1.2 Diesel Engine Exhaust Emissions Using Biodiesel

194

8.3.2 Spark Ignition Engines Performance Using Bioethanol

195

8.3.2.1 Effect of Bioethanol on Diesel Engines Performance Properties

196

8.3.2.2 Effect of Bioethanol on Spark Ignition Engines Performance Properties

197

8.3.2.3 Engine Exhaust Emissions Using Bioethanol

198

8.3.3 Effect of Ethers as Biofuels in Spark Ignition Engine Performance Properties

199

8.4 Future Prospects and Challenges

199

8.4.1 Future Prospects: 1st Vs 2nd Generation Biofuels

199

8.4.1.1 Second Generation Biodiesel

200

8.4.1.2 Second Generation Bioalcohols

201

8.4.1.3 Biogas

202

8.4.1.4 Biohydrogen

202

8.4.1.5 Bio-SNG

202

8.4.1.6 Synthetic Biofuels

203

8.5 Conclusions

203

References

204

9 Floating Vegetated Mats for Improving Surface Water Quality

213

9.1 Introduction

214

9.1.1 Nitrogen

214

9.1.2 Phosphorus

215

9.1.3 Wastewater Lagoons

215

9.2 Methods of Addressing Water and Wastewater Concerns

216

9.2.1 Land Application

216

9.2.2 Constructed Wetlands

217

9.2.3 Hydroponics

219

9.3 Floating Vegetated Mats

221

9.3.1 Concept

221

9.3.2 Water Improvement Processes

222

9.3.3 Requirements for Successful Use of Floating Vegetated Mats

222

9.3.4 Small Scale Study Using Secondary Stage Swine Lagoon Wastewater

223

9.3.5 Floating Vegetated Mat Study on a Single Anaerobic Wastewater Lagoon at a Commercial Hog Farm

231

9.3.6 New Research

237

9.3.7 Research Needs

238

9.4 Conclusions

240

References

241

Index

247